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PREFACE

Tu1s book is written primarily for two classes of readers:

(1) young mathematicians who have passed the stage roughly
indicated by ‘School Certificate with additional mathematics’,
and who are just beginning their more advanced work;

(2} young scientists, at the same stage, who are beginning
a composite course in mathematies and science. O

The book has been carefully divided into starred and unstainerl
sections; all sections marked with a star (asterisk) are igtendéd
primarily for the mathematicians and not for the, s’gﬁéntist-s.
The latter should omit all starred sections, at any yate on a first
reading. N

The explanations given in the fext are suffisiently full for the
book to be used either by a mathematip.&i}sét working under
a teacher or by individuals reading wery much on their own
with only occasional help. I hope thaby'even where the teacher
normally counts on explaining mbters himself and using the
book as a source of examples ahd éupplementary exnlanation,
he will, from time to time, ahstain from blackboard work and
tell the class to study aspart of the book for themselves. In
the last forty years the standard of teaching has so vastly
improved that the};&\?ofteu no need for the class to learn from
a hook; they haweanerely to wait and be taught. This is excel-
 lent so far as it woes, but it fails to develop the power of learning
for oneselff.?‘}{bwer which, later on, is at ieast as important as
the kngMge one has gained. And so I hope that even the
mostxpert teacher will sometimes allow his class to battle
wjtl:;\fheir own difficulties before he comes to their aid.

Of the subject-matter little need be said in a preface. It must
stand or fall on its own merits. My chief concern lias been to
present an ordered development of this part of Algebra, and
to provide both scientist and mathematician with the know-
ledge they will need later on.

The treatment, given in Chapters X and XI. of the binomial,
exponential, and logarithmic series is intended as an introduc-
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tion that defers all the logical difficulties. Many students will
need to be familiar with these series and to have acquired the
first rough idea of the representation of a function by a non-
terminating series: comparatively few will ever need much
more, My own teaching experience is that attempts to put the
logical difficulties too early result in confusion of mind.

I have tried so to treat the subject that anyone who has
studied my book will be able to face a Higher Certifi¢ate
examination, or a School Leaving examination, withoutbumuch
special preparation in algebra. This does not mean that TPhave
disregarded the details of the examination altogether. 1 have
been in close touch with the recent discussions~éoii‘éerning the
reform of examination syllabuses and, in pafticular, with the
work of the Cambridge Joint Advisory Genimittee for Mathe-
matics, In fact, the book conforms fa-ir;l)chosely to the syllabus
recomimended by that committee, ending at the point where
the young scientist and young mathematician part company.

T hope to publish sequei tQ\the present volume. This will
be for the mathematician mﬂy' and will deal with topics not
recommended for study at school by the scientist.

In eonclusion, I offer iy sincere thanks to the staff of the
Oxford University Rress for the excellence of their work, an
excellence that s e'm"_s.'to have resisted every difficulty that war
has brought against it,

Qs W. L. F.
HERTEOBDDULLEGE

Oftvu
21 Qctober 1944
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A SﬂMMARY OF ELEMENTARY ALGEBRA

THE rcader should know the items in this list before he starts
to read the book.

Factors and easy expansions

-yt = (e—y)aty),  (@y) =+ 2y+ys
B—y? = —ylaitay+y?), Y = @ty et—ayyEh
(-ty)® = B4 Bty t-Bayiyt, KON

(@4-y4-2)* = 2yt Byz - 22y, O
BSyi-+ 20— Bayz = (atye) R4yt —yz Lo ay),

All these, if they are not known already, cgt{\feie verified by
actual multiplication, \¥%

Solution of simple equations, jmeliding simultaneous
equations: ¢ x\ v

(z) two linear equations, o)

(b) one linear and one quad}jafﬁic equation.

Simple ratio and proqufiion, including

(@) f g — 5, theng& — be,

(i} if % = ch" and each ratio = k, then ¢ = bk, ¢ = dk, and

when k = 1,0, at-b  ct+d’

Ke b od
The lafter, if it is not known already, can be verified by sub-
stjt}l'ﬂng &k for ¢ and dk for ¢. :

" 'S Graphs, The method of plotting points and joining them to
V form a continuous graph,
Solution of quadratic equations
The roots of the equation

ax’4-bad-¢ = ¢
are given by the formula

—botJ(b*~ dac)

2a



A SUMMARY OF ELEMENTARY ALGEBRA vii

This formula is found by ‘completing the square’. Solution
by formula is a bad method in the early stages of algebra, but
it is useful once the eazly stages have been passed. The formula
is proved in Chapter IIT,

Indices
a-i’:&lz, a?lt = ¢far, a®=1;
am X et = gmin, amlagh == gi-n (am)h —= qmn, N
Logarithms ) : \ \)

log,(wy) = log, 2-+log, ¥; loga{e") = nlog,z,. ) =~
The proofs of these formulae are given in Chapter, X4, °
A\

Progressions v
@, a+d, a-+24,... is an arithmetic progression;
the arithmetic mean of @ and 4 is %(a-}—é}.:\ N
ca,ar, ar? . isa geometr@cif)rbgression ;

the geometric mean of @ and & isﬁ{(’dﬁ).

No further knowledge of progvéssions is presumed. It i,
however, useful to know the formula

11—y

- ;{:’l”l‘—[— 4 f2_]__ s _'1,
™ _

which can be proved, either by carrying out the long division
of 1—r* by 1—n, 6f/by multiplying the right-hand side by 1—r.
It is also uéehﬂ to note that, in many problems, the simplest
notation \f@ésthree nhumbers in arithmetic progression is
i ,f:". a—d, a, a+d
.1%1‘\)5'(;1' four numbers in arithmetic progression is
a—3d, a—d, ab-d, a+34d.



READING FOR SCIENTISTS

Ot all starred examples.

Chapter 1.
Chapter II,

Chapter III.
Chapter IV,
Chapter V.

Chapter VI,

Chapter VIL.
Chapter VIII. Omit § 4,

Omit § 2.4.
Do not attempt to memorize the proofs of
§ 4; note the worked examples in§ 5. Omit§7.

N\
Read §1, but omit the rest. A
. Q
Omit § 5. AN
Omit § 7. \}
Omit § 4. .\&
\/

Chapters X and XI. '
Chapter XIII. Omit § 6 and all a,ft@ 3.

This is a minimum course; it e, (be added to if time per-
mits. In partlcular Chapter X1 should be studied, if possihle,
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CHAPTER I
CONSTANTS; VARTABLES; FUNCTIONS

1. Constants and variables

From the earliest stages of algebra we are accustomed to use
letters, say z, ¥, v, or a, to denote numbers. In this use of
letters to denote numbers there is one point that calls for
explicit mention at the outset. This point is the distinction
between constants and variables, O

When we consider an expression such as 6z°—3z44 for
different values of z, say, for example, when we plot the"v&lues
of 62%—3x+4 for values of « between 2 = —4 and @ ¥ 3, the
letter x is thought of as taking more than one"\rﬁlue in the
course of the work, or, in the older phrase, z id\eonsidered ‘to
vary’. Such a letter is called a variable. ,Ohthe other hand,
each of the numbers 6, —3, 4 is fixed a.ﬁa‘ unchanging, or, in
the older phrase, is ‘constant’. Such Qambers are commonly
referred to as constants. In many. problems we must consider
the values of expressions such as\az>+-br-+c¢ when the letters
@, b, ¢ denote fixed (or constantpnumbers, which do not change,
while the value of z chang®s Yor varies). In dealing with guch
a problem we refer to {z{‘b ¢ as constants: and we refer to x as
a variable,

DrFINITION 1.’_ ,<A Tetter that denotes one fixed number, and that
number only, ;i@icaZled g CONSTANT: o leffer thal s not restricted
to one valuﬁ}iﬁt may take different values, is called @ VARIABLE.

2. Iﬁméii\ons of a variable

'2."1;\‘.1'161; z denote a variable. Let y denote a second variable
related to z in such a way that the value of y is fixed once the
value of z has been fixed. Then y is said to be a function of .
For example, if y is defined in terms of # by any one of the
formulae

' a2t dx-+5 :
—_ = ——— =5 :D‘c,
y=2+3  Y=gargsr Y

the precise value of y is fixed once the value of « has been fixed.
4868 B
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2 CONSTANTS; VARIABLES; FUNCTIONS

Let us suppose, for instance, that « is 2: then the three formnlae
fix the value of y as 7, §, 4 respectively. - _

" In the study of algebra we shall be chiefly concerned with
the simpler types of functions, such as polynomials, rational
functions, and, at a later stage, what are called algebraic func-
tions. We begin by defining these types of function.

2.2, In the expression 2v+43 the variable z appears only to
the first power: in the expression 4x242x43 the variablé™ax
appears only to the first and second powers, there being.'no
term a2, z%, or higher power. It is convenient to hfwé Jdistin-
guishing names to mark the highest power of z thet appears.

7

Accordingly, we note the following definitions:

# '\ ?
Dreriaariorn 2, When a, b, ¢, d denote cmw"t}nts, and 2 is a
variable, the functions '

| N .
ax--b, axf+brte, axs—{—.l’)g%-.-\pcx—kd (& %~ 0),
are called, respectively, LINEAR; QUADRATIC, OUBIC functions of .

DErNrron 3. When a,..v.;j:?c"“denote constants, and x is @
variable, the function "

ag™-fbapIF bk (@ £ 0), 1

wherein n 15 @ positjg@'@a}nteger, 48 called @ POLYNOMIAL FUNOTION

of = of degree n ;Ssometimes it is called simply ¢ POLYNOMIAL.

The constants &.)6,..., J»-k are réferved to as the COEFFICIENTS of

2, &L, N0 respectively; the separate parts of the sum (1),

namelyl\@s“, ba"1,..., are referred to as the TERMS of the poly-
no mjh?{.. } . LT .

1 & \ L
There are many phrases, such as ‘a polynomial of degree =
ih z’, ot ‘a polynomial in z of the nth degree’, that serve equally -
well to denote the function (1) above. . The exact form of words -

~ is of little moment, - '

It will be noted that Definition 2 gives particular names to
e polynomial when  has the value 1, 2, or 3, This is purely
a ma;j:ter of convenience; and it js sometimes convenient to use
the particular hames quamrrc (0r BIQUADRATIC), QUINTIC,
SEXTIC for polynomials of ‘degree 4, 5, 6 fespectively. '

th



CONSTANTS; VARIABLES; FUNCTIONS 3

2.3. DEmNITION 4. When Plx) and {x) denote. two d@stmct
polymmzal Sfunctions of x, the function
P(x)
Q) _
which denotes the fraction ‘P(z) divided by Q(x)’, is called a
RATIONAL FUNCTION of .
- For example,
' 2x4-3 9254-16 Tx19-L13
3224821’ 1421-3° 6xi®+1 A\
are rational functions of the variable . Each function- s the
‘ratio’ of one polynomial to another poiynomlal and this is
the origin of the term ‘rational function’.
For convenience in prmtmg the fraction P(hs) dw:ded by
Q(z)’ is often denoted by Px)/@(x). Thw tiotation is not
- recommended for use in written work, Wharb it sometimes leads
to mistakes. In print the notation saﬁ?es space and Is easier
for the compositor to set up.

2.4.* There are other types of f functlon that we shall occa-
sionally encounter; in paartmuia,r, ALGEBRATC FUNCTIONS. We
shall not elaborate their géneral study, but the reader should
endeavour to obtain g Qlear idea of their type. We illustrate
__ the points at-issue { K an example.

Suppose that, m he study of some problem, we have two
variables v and >, "and that we have been able to prove the

relation "\'\ o= S+ Dydat = 0. - 2)

_ Thls quH,tlon is a quadratic equatlon iny:itisy*+Ay-+B =0,
where, Y and B are polynomials in'z. In such a case we refer
A % as an algebraic function of #. By solving the quadratic
\e(’iuatlon we see that :
: L y= 2:6'—}-1-|~\/(4x+1}

(3)

glves an exphclt formula. for one of the possible values of y if
(2) is to be satisfied.
In general, if there is a relation of the form

Yyt };(m)y".'l—]—Pé(x)yn_.z'{’ et Bpfa) = 0,
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where B(x),..., B,(z) are rational functions of =, the variable y
is said to be an’ algebraic function of . In the general case,
when # > 4, there may or may not be an explicit formulaf
that corresponds to {3). _ :

In this bock we shall be concerned only with particular cases
of glgebraic functions and not at all with their general theory.

3. Dependent and independent variables

When a variable y is defined in terms of a variable a:,\we
may, when convenient, distinguish between them by aising the
titles ‘dependent variable’ and ‘independent variable®. "Thus,
when we are considering PN

§ = 3221423, ..,'\"'
and we think of x as taking any value it p}eéses, we call x the
INDEPENDENT VARIABLE: the value of\y is fixed only when

the value of z is fixed and 50 we call /€ DEPENDENT VARIABLE.

Y

Exanpits I a
1. State whether the followfr[é functions are polynomial or rasional

fanctions of x, and, if they age polynomial, state whether they are linear,
quadratie, or tubie polyflamials:-

2043 927 1
Batd,, [NTE . ggsgo7 = —
BN LG S =
2. Prove t};sﬂé the sum and product of the two polynomials
‘\ / 2z 3, 3x® 1252 L 5x -7

are pq}irilipmials of degree 3 and 5 respectively.

%\;Prove th'at ‘the sum of two polynomisls, of degrecs m and n,
Jhero m > n, is, in general, a polynomial of degree m; and that the

¢ ‘\".plx‘oduc.t is always a polynomial of degree m--n.

N
%
\ }

4. Prove that the sum end product of the two rational functions
262 1.3 -1
dr-+1° LBl g

are 9:130 ratiorfal functions. Prove, further, that the result of dividing
the first function by the second is & rational funetion.

l tiz g thGOI‘BI]l of hi her & eerz that no geries of rook ext.ractlonss such

ive quadratic or cubic equation, can suffice to furnish an
explicit formula for the roots of the Eeneral equation of degres 5 or more.
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- Sorurion. Swm .

22243 3@2—1 (2234 3) @ — 2u— 1)+ (xt—1)(42+ 1)

4o t1 P @z —2x—1) | ’
which is a polynomlal of dcgree 5in « divided by a polynomiel of degree
4 in x, and is therefore a rational function of . [Norr. There is no
interest in the ealeculation of the aectual coefficients in the numerator
and denominator: it is the general form of the expression {1} with which
we are concerned.} '

(1)

5.* Given two rational functions of , prove that their sum, their\
product, and the quotient: of either by the other, are also rational
functions of %. _ N\

8.* Prove that when ) g N/
_ J(14a)e N
_ o) — &’ D
yigan algebra,ic_function of @ satisfying the equatioﬁ )
y—2y(1+20)+1 = 0.

Sozvurion. We shall outline two metho , ®bth useful examples of
a general line of attack on this and sm:u]am problems

y J( o) ol

(i) When J(l ¢~x‘r— ! (1)
mel d(1+:s
3y~ g1 &
and so x{y% 132 = (I-4+zXy— 1)3.
Therefare o= 29142241 = 0,

and ¥ is an algebraic function of z.
(ii) Write « L%, 1+a = +* (to dispense with root signs). Then

'\ vtu
\:i}:“ ¥y = —u’
1e. R - ylov—u) = v-u,
.e\ M iy —1) = wly+1}
. g1l
\Henca V=
But, by the definitions of # and v, 14-%* = %, so that
' (y+1)
1L 2 = us
TV

On writing 4t = @ and clearing of fraetions,

(y—1%1+2) = 2{y+1)%

as in {ij.
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7. Prove that, when o
o AR
T gLy rae’
¥ i an algebraic function of @ satisfying the equation
o Hy—1) = (1t (l—-y)
Hixt., Use the methods of Example 6.
g.* (Harder.) Prove that, when
N v o VAR (I 22) 4 e _
Y= 0o — J+ Byt v’ ~

414208 = (y— (e +1). - A

‘Hinz, The methods of Example 6 are guides to a correct, :Qsa}"t. :

N

4. Functions of two or more variables . ./~

Suppose that z, y, z are three distinet vacria]g‘lga’and that they
are related in such a way that the value ofzJs fixed once the
values of @ and ¥ have been fixed. Thep we say that 2z is a

- function of the two variables  and y\ r example, when
o &= w3z, (1)
z'is a function of x and #: if W{a;ﬁx the values of z and y to be,
say, 2 and —1, we therehy_:ﬁt ‘the value of z to be 4—641,
e, —1, R\ . :

The expression on the right-hand side of (1) is a simple
example of a POL};@({MIAL_FULTCTIOH OF THE TWO0 VARIABLES
a and g, or, brier,” “A POLYNOMIAL IN & AND %’. The most

general polyi}glf{xial in z and ¥ iz 2 sum of a number of terms
each of the.form ' '

A
-whe ©(7y"s are positive integers, or zero, and each a,, i8 a
- congtant. :

SPunctions of thr_ée and more variables are similarly defined.

\ We shall be concerned only with particular examples of such
functions. . '

5. Notation for functions

5.1. For the sake of brevity we frequently use the notation
J(#) to denote a function of : in using this notation J(2) denotes
the value of the function when x hag the value 2, f(3) the value
of the function when 2 hag the value % and so on. In order
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to state, at the beginning of & sum or problem, exactly what
function we are considering, we shall use the identity sign
ie. =. Thus, we write, for example,

| | @) = 82247, | (1)
which is read ‘f(x) is 1dentically equal to 3x2+7°, to mean that
whatever value is assigned to the variable z, the symbol f(x)
will denote 3z2+-7. Consequently, we then use such symbols
as (i) f(2) and (i) f(1—=) to denote the value of 32*+7 when

(i) « is replaced. by 2; that is, . : _ A
3.447=19; - R\

(11) x ig replaced by 1—a; that is,

3(1—x)24+7 = 3(1—2u—+a)+7 = 10— 6x+3x2
«\
5.2. Worked examples.

(i) When f(x) = (3c—4)/(62%—7), find thenlue of f(—2)-
: 3(—2)—4 _ —bg 4£Y 10 2
f=2= 6(( 2))3 T a8y TR T
(ii) Prowe that, if a, b, ¢ are mn&@ants and if
f) = a2¥-ba e,
then f(:c+1) 2f(x’)—|—f x—l}"é 2a (that 1s, is equal to 20 what-
ever value is assigned ta xJ :
When : \\f(:v) ax3+ba:+c, _
- we have " '
fe+1)-2fE) Ha—1)
$=_=\a x—i—1)2+b(x+1)+c—2(ax2+bm+c)

,.C\ o +af@—1)2+blz—1)+c .
L3 = a(et 21 +-b(ot- 1) e 2(axt+bato)
\”“ +afe?—2a+1)+b(e—1)-+e (1)
= 2a, ' i : -

the total coefficients of 22 and of # in (1) being
a—2a-+a, ie.zero, '
and 2a-+b—26—2a-+b, ie. zero.

NoTe. We may use the identity sign, since each step of the
a.rgument holds whatever value is asmgned to . When we are
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considering particular values of &, we must not use the identity
gign : for instance, we write

(3} —2f@)+F(1) = 98-+ 3b-+o—2(dat 2b+c)d-atbto

_ = Ja.

5.3. We may use letters other than f to denote ‘function’,
just as we may use letters other than z to denote a ‘variable’.
For example, we may uset F(x), &%), or u{z) to denote a quc-
tion of z; or again, G(y), A(y), or ¢(y) to denote a functionof Y.

A function of the two variables x and y is commonly,denoted
0\ w

by flz,y}, F(x.%), and so on. O
5.4, Worked example. | AN
PrROBLEM. Y

When f(z,y) = 23+ 32— 2zL), prove thai
f2Fz, 244 y)—flz, y) =4@-y).
SorurroN.t \ v
72t e 24y) = @+ 2y — 24t o1y)
= 4'—?31}z,'+x2+4+4y—f—y2-2(4+x+y)
S 2wty)+atty,
S = —2(wt-y) F oty
S FCte 24y ) = 4aty).
. L\

Q> Examrrrs 15
1. Find the values of
OF WS, ) -8, @ s
w}}@m) = (3% To+2)/(35 1),
22, "Find the values of '
AN i
~\J i) s, M) f(~1), (i) (%)
\ ’ when f(x) .- (3x*+7$+2)(4a:—-1).
3. (i) Find the value of the function
@) = @4yt) —(z g

when z = 2 and ¢ = 3,

"t ¢ and 4 are the Greelk letters ‘phi® and “psi’.

prictis;jfmcand line of wor 1g can be omitted whey the student ia sufficiently
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(ii) Prove that f(1—wx, 1—y), that is to say, the value of the funection
when # iz replaced by 1—w and y is replaced by 1—v, s identically
equal to flx, ¥). ) :

4, When f(x} = Ax+ B, where 4 and B are constants, prove that

flet+)—flay=4
and deduce that

Fle+2)—2fe+ 1)+f@) = (flz+2)—fla+ 1)}~ {fz+ 1)—fx)} = 0.
5. Prove that, if f{xr) = ax*1-bx--¢, where &, &, ¢ are constants, and

if {x} == flw+1)—f(x), then ¢{x) in of the form Ax+ B, where 4 and\
B are constants,

Ans, 4 = 2a, B = a-}-b. Notice that if f{x) is any quadratic exﬁks-
‘sion in ®, then f{z+1}—f(x) 15 linear in o: it is this fact tha,t fna.tters
and not the values of 4 and B in terms of a and b.

e
o’.

6.* In the notation of Example 5 prove that ¢z 1) 95(2:) is a eon-
stant, i.e. flz+2}—2f(x 1+ 1)1 f(») is a constant, '»‘.\

7.* By considering the result of Example 6 (&) as it stands, and
(h) when x is replaced by x+ 1, and Subtractu}g:the two results, prove

that flo+3)=3f@+2)+ 3f(r+1)N(x) =0,
when f(x) = aqx*4-bx-c.

8. When f(z) = ax®+b, where a mdb are constants, prove that

() flo+2)—flz) is divisible by2)®

Gi) floty)—flx) is divisibledy'y.

9. When f(z) = = az®4-bedhex+d, where a, b, ¢, d are constants, prove
tha.t Flo)—fly) is lelSIble by x—.

' 10.* Prove tha.t, w\cn flzisa polynomla.l in i, f ) — fly) is lelSlblﬁ -
by z—y. .

11, When,_{tx) a:z:—]—b prove that

. \0 ® X F(a2) -2y} o) = alm—y)*
SO Flat) = aa?+b,

AY — 9f(wy) = — 2azy—2b,
) Hy?) = ay*+b.
Fla?)— 2y +F (%) = o{e® — 2y -by*) = alr -~y
12. When f (z) = ax+b, prove that
| £l — 3 (ty)+ 3 ) ) = alz—y)
. When fix) = az?--bx-}c¢, prove that

Flay=fl) S — (2)

= a{z—2).
r—y ¥




CHAPTER II
POLYNOMIALS: GENERAL THEORY

1. Preliminary

S

O

™\

Let py, py,..., P,,, of whick the first, p,, is not zero, be given
constants; let x be a variable. Then

. Do x“'}‘}’l_ a*1tpy .x”hz‘f— e tPy (1)
is & polynomial of degree » in . We shall denote this poly-
nomial by P(x). : Q)

We first examine the result of dividing Pz} by z—a, where
a 18 & constant. The first step of the usual long-division I\flét]}lod,

nq,mely, - xma)}?ox“-!-z?lx““Jr---JrPn (puan_*_'im,}"s.

PoXt—apye®l K7,
m&:ﬂ—l —1-132-37“'“2, '..‘:\\
shows that the quotient when 2 —a divides }f'{x)’ is a polynomial
of degree n—1, of which the first term,ig\}é 2L,

We could, with care, complete the-division, continuing the
long-division process until the renfaitider contained no z. We
should find that the final remainder was

Pua"‘l‘Pl a‘.'l—}‘:{‘;:pz an-—2+"'+jjw {2)
But the work would be log*and many students would fail to
follow it; so we find theé_temainder by other means. We must,
however, note cegrei’ai]l ‘that the final remainder would be a
constant, involyinig'no ; for we go on dividing and obtaining
fresh terms in thé quotient just so long as the remainder at any
stage in thu Johg-division process-has an z in it; the process
stops whelyo « is left in the remainder. '

For\é:g}ﬁnple, when we divide .

. :.f'\ @ +72% -3z + 10 by 21,

W&ot out the division sum as follows:
) ¥—1) B+ T2~ 32 4-10 (22 +8z4-5
axf—z?
822 3¢
Brr—S8gy
Bzt 10
5r— 5
15,
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We go on dividing until we are left with a remainder, 15, which .
contains no x: this is the final remainder and is a constant.

Moreover, since a?--8x-5 is the quotient and 15 is the
remainder, .

T2 — 32410 = {z—1)(2?4-82+ 5)4-15,

the identity sign being used because the two expressions are
equal whatever be the value of z; each step of the lnng divigion
process is valid whatever » may be. N\

N

2. The Remainder Theorem ' "\~§
2.1. TurorenM 1. The remainder when the poly Jnomml
Plr) = pea™+p 2+ 40, ';f
is divided by x—a is P(a), i.e. o
R r 2 G A Pa
This theorem is called the * Remainder fl\@ewem

N

Proor. Let Q(x), a polynomial of tIegree n—1 in ®, be the
quotient, and let R, a constant, bc the remainder when P(z) is
divided by x—a. Then %3

| Plz) =Nr—a)Q(@)+ R ®
the identity sign being ubed because the result is true for all

values of 2. Sine (@ is true for all values of x, it is true when
x'= a. Put x =2¢g in (3}; we obtain

@7 Pw=
, Hence &) the remainder, is equal to P(a).

2.2 'Q‘n alternative proof. The remainder theorem can also be proved
by aol,ua,lly ea:rrymg out the division. Let us divide
») : Pl R M g Y
. \ })} a—a. The working is
@@} Py a.3—]-p! 22+ py Ly (B @4 21 +‘7&"ox+ﬁs+“‘?’1‘i a Pa
Pyd —apg at . .
(p+applot 4 past
{(pyHapy)e®—{ap + a°p)x
(pg+ap,+aPPe)E 1Dy
{pyFap, +a’pr—{ap,+ a’py+- ﬂapo}
PyFapetatp+ 7Py
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The quotient is paa®-{p + apg)r - (P a0y 3-02p,) and the remainder
By-l-apyt alp, +a®p,, which is the same as pya®-+p, a®+ p, 24,1 hence,
the remainder iz the result of putting ¢ instead of x in the dividend,
This pro¥es Theorem 1 when # = 3. _

When x—a divides pya®+p, 2*14-...+p, the quotient runs

i Pe2™ - Py at Py 2?2 (ppad -y gt pelat 4.

and the remaindgr is pya®+p,a?1+...+p,. It is & good exercise to
work out the first few steps of the division, note how the terms of the
quotient build themselves up in the regular pattern Pox®, (PP a7y,
(g @+ p a+poJa™2,..., and so convinee oneself thet the first remaiinder
to be free of x in the long-division process is Poe®tp a4 Kok

2.3. Tarorem 2. If Pla) = 0, then the polynomial, O
Ple) = poam+p1 @by o

has x—a as a factor; conversely, ife—aisa faﬁt}r of Plx}, then
Pla) = 0. : . \
: H ° ..\\.

. Proow. By Theorem 1, the remaifder when x—a divides

- P(z) is P(a). Therefore, if Pla) = O, the remainder is zero and
x—a divides P(r) exactly, ie. Z<-@"Is a factor of P(x). Con-
versely, if v —a is a factor of P(@), the remainder must be zero;
that is, P{a} must be zero. . \

3. Applications of :I.‘lj;eorems 1and 2

We work some ‘e\ﬁé'fnplés to show how various problems can
be solved by using the Remainder Theorem.

PROBLE’D{ 1\ Find the Jactors of
Y - 283 T -T2,

,§?hce the constant term is —2, the linear factors, if there are
Bny, must have a constant teym %1 or £2, for 1 and 2 are the
(_pnly factors of 2. We therefore son whether any one of - 1, 242

\m‘; iz a factor.
SOLUTION (i), Write
Jo) = 2287207, o
Then  fl)=0, f(-1)= _9 7 7 4 # 0.

Therefore (by Theorem 9) -1 js g factor of f(x), while z41
is not a factor. ' '
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Divide f(z) by the factor found, i.e. a—1. We get 22?—5x12
and —5a2 = (2—1){z—2).
The required factors are, therefore, x—1, 2x—1, 2.
In this sclution we divide out by one factor as soon as we find
it and then factorize the guotient.
SoruTroN (ii). ,
Write f(x) = 208 —Ta24-72—2,
Then  f(1)=0, f(—1)}= —2-7-7—2:£0,
f(2) =16—28+14—2 = 0. O\
Therefore x—1 and x—2 are factors, and so their, }_'arbduct.,
~3x-42, is a factor. Divide f(z) by x2—3x—]—2 Thé’aresult'is
2x—1. The factors are x—1, z—2, 22— \

In this solution we use Theorern 2 to find as whany factors as we
cant and then divide by the product of the fav\ors s0 found.
9.\l
Prosuem 2. Find the factors of RS
308 —22a% t—43ab“ <1282, (1)
For the purpose of applying the) result of Theorem 2 to this
problem we think of (i) as & po]}nomlal of degree 3 in @ whose
coefficients are 3, — 225, ‘_1352, %ntl —120%. We write

Fla) = 3a® —220%h - 43ab® — 125
and accordingly, we Lmé\the notations
f(2] te mean 3\8\ 22 464 43,287~ 12333
f(2b) to meah,3. 8% — 22, 4525443 26,07 1265, i.c. 1057,

and so on, N\

Som‘n@?}“
N\ Write f(a) = 3a3—220%--43ab2— 1255,
Thegy F(b) = 363 — 2263+ 43091253 £ 0,
~O F(2b) = 108* £ 0, |
N F(3b) == 81b5—22.9534 43, 3531363

= ($1—198+129—12)h% = 0.

Soa—3bisa factor and the quotient, on dividing out by a—3b,

ist 302—13ab{-4b2. The factors of this are (3a—-b)(a—4b).
Hence the factors are a—3b, a—4b, and 3z—b.

+ The reader must work out the division sum for himself.
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PROBLEM 3. The polynommi _
P27 30 av b (i) -
8 dsmmble without remainder by 'cﬁ—f—x 2. Find the values of -
@ and b. '
'SoLUTION.
' p2t D = (x-i—).){:t:—~1) _
~and therefore z+2 and x—1 are factors of {i). Hence, when

we put ¢ = —2 or z = 1, the value of (i) is zero. &
(2P U232 —2a b =0, ()
and 14+243+a+b = 0. Re) ’
 That s, —2a+b= —12 N
and a+b = —86. "‘_'\"\1'
Solving these two equations, we get @ = S\ L 8.

ProBLEM 4. Prove, by means of the reoﬁz}:nder theorem., that
2x—1is @ factor of 2a5— 3&5%‘ 2x2+3x-

SOLUTION \J
| Write f(z) = a8 gx%%w‘*——x% fr—1.
Then - f(}) == Th—i+i—3 =0,

and so :r_'—12~ is a, factor of f(x).
Hence 2x—1 i_s,a"factor of 2 X f(x); i.e. is a factor of
' — 825+t 2224 32 —1.

L >

A \ - ExamprLES II A
1. Fu\ci}he remainder when
$2% + To+ 6 is divided by z+1,
fil} 5574 142245 i5 divided by x—9,
o \ (m) 9:9+:t:2+x+1 is divided by -+ 3,
Y (iv) afba? a4 1 is divided by 42,
2. Find the value of ¢ .
{i} when 3234442 — T2+ 6 is divisible without remainder by e—1;
(if) when Sxtd- a4 6x—4 is divisible without rema.mder by xz+2.
3. Find the values of & and & when
(i) 32?4+ ax+b is divisible without remainder by z?--1;

(i} 827+ 0?4 ba—2 is divisible without remainder’ by 2x—1 and by
@41, : . .
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" 4. Show that when a polynomiaﬂ Jix), of degree n in =, is divided by
{z—1){(x-- 2}, the remainder is of the form aex-1-b, where ¢ and b are
constants; and deduee that

Sz} = (z— 1)z —2)Qz)+axtb,
where Q{z) is a polynomial of degree n—2 in x,

5. The remainder whon 223z 42 divides pritgrt— 18:v2—[— 15x—
4z—9, Show that p =1 and g = 4.

Hinr. . . : o

pettgd—.. = @— )& —2)(pe®+ .. )+ de T, (1

where prit... denotes the quotlent when the left-hand side is dixided
by a®—3x+2, i, (2—1){z—2). (\)

In (i) put ¢ = 1, z = 2 and solve the resulting equations for P and g
6. (i) The remainder when (xJ-2)(a:+ 3} divides z*ag \’—Fvb is a1,

Show that ¢ = 42 and b = —137. .\.\~
(ii) The remainder when z*—1 divides x°+ax3-'f-mli is 2x+3. Show
_ths_t.ta=b=2. ) \’ : .
7.*% Given that a:—]—2 is & factor of O

\ 1 3

—be¥ 11zt 4(!1 —}—J‘}x—[—c&

and that the expression itself is thf" squa:t-e of & quadratic in x, find the
values of a and &. .

® ",
N

8. Find the factors of A\
' (i} 200~ 322 —3x+9, (i) 6r%—2t~102—6.

9. Find the factors of \\ ' _

{i) P—8et llx\?)\ (i) 22—Ta-+6, (iii) attad—Ta2—z16.
10. Find the fattdrs of ' ' ' '
1) a"} 6ax®4-11a%x— 6g”, (if) o — Tay®+ 647,
ll Emti the fadtors of .
i} 267 — 30— Bab?. 20T, (i) 807 —bre—190ct-6c%,

,1? Prove that '

= (1} Sx—~lisa fa.c:t.or of 332221432 —12;

{ii) 2@—,~b id e factor of" 10a3+ 12a2b -+ 20abt - 7b3

4. A pdlynomial as the product of factors

4.1. dn zmpormnt detail. Let a, b be two numbers, neither
of them being zéro. Then their product ab is not zero. Hence,
when the product of two numbers is known to be zero, the two -
numbers cannot both be dlﬁ'erent from zero.



N

O PO =peatipeniy Lp (py 2 0)

. particular valne zero, T\
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For example, if ed = 0 and it is known that d # 0, then it
- follows that ¢ = 0.
Again, if ad = ¢d and it is known that d 3£ 0, then ¢ = ¢;
for when ad = ¢d we have

(a—e)d = 0,
and so, since d # 0, we have a—c = 0, or ¢ = ¢. Thus, if
 ed=cd {d0), N
then a=c

In words, WE CAN DIVIDE BOTH SIDES OF AN EQUAGION BY
'ANY PACTOR WHICH IS NOT BQUAL TO ZERO. A

On the other hand, it does not follow from the known fact
0X7 = 06, that 7 is equal to 6. It is quitd.jtaprobable that
anyone would divide by 0, once the zero was clearly set down
as such on the paper. The danger is that when working with
symbols like @, py, 2, which may defote any numbers, we are
liable to divide by them and forgedto note that the result so
obtained may not be true when the symbol stands for the

N

4.2. Fundamental theorems. Theorems 3-5, which follow, are
are of great importafiee' in the theory of algebra. The proofs
of these theorems ‘way seem difficult, The reader is advised
) to follow the Yine of argument that leads up to Theorem 5
and its corollaries as well as he can (many readers will have no

* particular difficulty), (it) to master the facts contained in the

enungie{ti ns of Theorem 5 and its corollaries, and then to study
~ theworked examples in § 5. '

:'\:f ;"I‘HEO}%EM 3, If the polymomial

8 equal fo zero when x has any one of the n distinct values @y,
gyensy By, then

Pot™+pr @™ - tp, = Po(t—a)(z—ay)..{z—a,). (1)

The identity sign = between the two sides of (1) means that

the two sides are equal for all valyeg of the variable z, -
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Proor. By hypothesis, _
P(a'l) = 0! P(a’ﬁ) = O: At . P(aﬂ) = 0.
Since Pla,) = 0, z—a, is a factor of P(z). Moreover, ag we
noted in § 1.1, the quotient when z—a, divides P(2) is a poly-
nomial of degree n—1 whose first term is p,2*~*. Let us denote
this quotient by §,_,{z). Then we have, so far, proved that

Plz) = (#—2,)@,1(®); (2)

where @, _;{z) = pga"14-... O
Since Play) = 0, we have, on putting = 4, in (2), ‘O
0= Plag) = @-t)@ulm). O B
Now az # a, {by hypothesis) and therefore, by the &rgument
of§el Quala =0 2O
Hence x—a, is a factor of @,,.,(x).
The quotient when x—a, divides @, 4 f?) w1ll be pea*2+...
Denote this quotient by ¢, _(%). Thenx
| Queal@) = (E—a)Quiel),
and s0 P(@) = (e =8)@5-1() .
= (@ ay) (e — ) Qus(2), 4)

- where @, _o(x) = P23 —[—

We may contl%s the proceas of taking out factors x—a,,
X— 0y, T—dg, en we have taken out one factor x—a,, a8
in (2), the qnotrent is Q,_{z) or poam 4. ‘when we have .
taken out o y Tactors Tty and x—a,, as in (4}, the quotient
is @, a(@)\lor pox*-2+.... Thus when we have taken out n»
factor:t&“—al, R , the guotient will be Qo(at) or
poa;“ »which is simply pﬁ (smce 2" =1). Hence

Q P(x) = polr—a1)(m—ay)...(c—a,).
4.3, TazoreM 4. A polynomial of degree n in x cannol be .
equal {o zero for more than n distinct values of x.
Proor. Let the polynomial of degree n be

P} = poa+4p, 8" I tp, (P # 0)-
The condition gy # 0 is necessary in order to cnsure that P(z)

is, in fact, of degree » and not of some less degree.
4868
. C
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Let P(2) be zéro when z has the n distinet values a;, ay,..., @,
Then, by Theorem 3, ) _
Px) = po(x—a_l)(x-—ag_)...(xn-a.n). ~ {8)
_Moreover, (5).cannot be zero when x has any value distinct

from @, @y,..., @y; for no factor of (5) is-zero for such a value
of and by hypothesis, p, is not zero.

4.4, THEOREM &, Given that tke expression : _ \
P2+ P21y, O\
&8 equal to zero for more than n dw_tmct values of x, it follows that
. . poz pl = L. — Pn = 0,_ ..'f":(.
and that  pe@fpy @ py = Qs
Proor. - : - O

]LI'THFR Py Pryes Py are all ?QI:Q,
OR there is a first one in the’ set that is not 2er0.

We show: that the second a.lterpatwe would lead to a con-
tradiction and is therefore lmposmble

Suppose p;, where &k < #,] mthe first of py, py,... to be different
from zero., Then the expressmn reduces to

Pia™ "J@;f 12" R+, (py # O)-
This isa polynoml\[ of degree n—Fk in 2. Therefore, by Theorem
; it cannob, B equal to zero for more than n—k values of @.
But we are\gwen that the expression is equal to zero for more
than €% values of  and therefore our supposition has led to
a com] diction. Hence the supposition is impossible.
Now suppose that p, is the first of Pos Pp»--- t0 be different
\‘from zero. Then the expression Do Py & 14 ... 4-p,, Teduces
simply to p,, which-we are supposing to be different from zero.
Thus the expression is never equal to zero, whatever the value
of #. This contradicts the original hypothesis that the expres-
sion is zero for more than » dlstmct values of x. Hence the -
- supposition is impossible,
Accordlngly, only the first a.ltematlve ie.

Po=Py = \"‘ P.=0
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is possible. Further, when pg = p; = ... = Py = 0, the expres-
sion PoR™Hpy et 1+ P
is equal to zero for all values of z. This proves the theorem.

CloroLLARY 1. Grven that
uxﬂ+:plxﬂ Itk py, = 0
st follows that Pp = P == e == Py = O _
‘Proor. If the expression pox®+p a1+, I8 identica.lly\
zero, it is zero for more than » values of x.
CororLary 2. If, for all mlues of x or for more than . wdlues

of x, .
DX+ T e QOxﬂ+Q1xn_l+."'Zl’jq“i {1)

f‘hen Fo = q{i? pl - Q'v o D = g: :wj\.\
PBOOF If (1) is true for more than » values of 2, then o is
(Po——Go)&" -+ (Py—q2 )2 - —l—Lp,}—qn) =0,
a’ndhence Po— QO_‘O_IPI QI""O \;Pn qﬂ_..o

-4.5. Equating coeﬁcwnts The process of deducing from the
identity \
Do Py 2" +10n = ¢p2"+ ¢ " et
the facts that py = 44 P{= gl, ') Py = 4 18 commonly called

‘EQUATING OOEFFICILNJ;\s The process is widely .used. '

5. Applications of\'Fheorems 4 and 5
. PrOBLEM b, 8how that constants a, b, ¢, d can be found such that
n? = ﬂr(%%1)('-*%—1—2)(n+3)+b(n+1)(ﬂ+2}+c(n+1 )+d, (1)
and ﬁné\thew values.
, SOLUTION.
Do D a4 1)n4-2)(n4-3)- {—b(n-; ){n+2)+e(n+1)+d
N = a{nd4-6nit-lln+ 6}+b(n3—|— 3n-+2)+e(nd-1)+d
= a n3+n”(6a—|—b)+n(11a+3b+c)+(6a+26—}—c+d)
This is identically equal to 22 if
a=1, 6atb=0, lat+3btc=10 6a+26-1c4+d =10;
‘Le. if - : o
a—1 b= —6 o=—11F18=1, d=—6+12-7=—1
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., there _are'such cohstants &, b, & d and they are
a=1, : b=—6,  ¢c=1  d=—1;
ie. n? = (n+-1){n+2)nt3)—6(r+1)(nt+2)+7nA-1}—1.

We may check the accuracy of this result by inserting
particular values of %. '

Check by m = 0;  0=6—12+7—1.

Gheckbynz —1; —1=0 0+0—1. Q)

PrOBLEM 2. Show that no constants  and b can_ be\ j‘bwzd
Suchthal o = b bRt S (@)

SOLUTION. i f: '

_ a(n—’,—l)(ﬂ—]—‘))+b(n+2){n+3) O

= a(na—{—3n—1—.nk+b (n24-5n6)
= nz(a—i—bH\ﬂ(\.‘»a-}—ﬁb V{201 60).
This will be xdentlca.lly equal to n gnly if
a--b =1, 3@—1—:}6 %c 0, 2a-+6b = 0.
The only solution of the ]a:ét two equations is @ = 0, b = 0,

and these values do nof" Eatlsfy the first equation. Hence no
values can be fcmnd {0 satisfy the required conditions.

PrROBLEM 3, \Erow that, when @ # b = ¢,
aﬁ(x——b)(x?c-) Bz—c)z—a) . cXz— —a){z—b) _ =2 (3)
(a—f)(?z—c) b—o)b—a) * le—a)e—b)
SoLuTION. When z = g, the Jeft-hand side and the right-
h‘l,nﬂ\\mde of (3) both equal g2: hence the left-hand and right-

'h}md sides of (3) are equal when x = a, Similarly, they arc

p 1,,Lqua,1 when x = & and when x=c,

o’

The two quadratic expressions are equal for 3 distinct values

- of the variable 2. They are therefore 1dentlcally equal {Theorem

5, Coro]lary 2.

ProBrEM 4. Prove that, if 23+ 1 is @ Jactor of

x5+am“+bm3+cm2—|—da,—}—e
thena—d b=e,andec=1,
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Sonvrron. If 231 is one factor, there must be another
factor of the form x24px+-e, and then .
2t aztt badt-cat L daete = (@4 1) (@ +petc)

= x54-pat-+text+a?+pr-te.
On egnating coefficients,

a = 7, b=e, (::1', d = p,

and hencea =d, b —¢,andc =1.

N\
Exameres Ilz O\
1. Find the values of a, b, ¢, d which are such that . s\
(i) 2% = a(x+ 22 +{x+2)+c, PR N
(ii) 2? = a{@+ 1P+ blz+1)2+e(x4-1)+d, R4

(iii) 334222 +o—1 = atw—1P+b{z— 1) +o(z-~N¥d.
2.* Show that any cubic polynomial in z cm\b}: written as a cubic
polynomial in x—1. \ W
3.%* Show that any ponnom:al in % c»an be written as a polynomial
of equal degree in x—k, where & is & gwen constant.
4. Find the values of &, b, ¢, d..w‘lflrch are such that
(i) 2 = afn—Dntbn; N '
(ii) n® = a(n—1mr{ ¥ PR 8(n—1)4¢;
(iii) ns-;—3n=+5%_-7\:—%;.&(n—1m(n+1)+b(nr1)n+c(n—1H.-d.
. Find the va.lues of o, b, ¢, d which are such thab '
{1) 2 = a(wk 2)"’—I—b(x+ 1)e4ext+d;
(i) =* —\"@&H— 1)3-bx+-c;
(ii1) ,?Q\-I-»Z:v’ 7 = a{g+ 1P-+bat4clx—1)+d.
6. «Prove that there are no values for @, b, ¢ which are such tha.t
~ O 8 = alo— Dele+1)-+bae Dot 2o+ 1)z 2Xz+3),
\but that
2 = Ho— Da(e+ 1) —ix(z+ 1)z +2)+ e+ e+ 2) = +3) - 1.
7. Prové that, when @ = b # ¢,

(x—b)x—e} , (x—c)w—a}) , (x—a)(z—D) i,
{@a—b)a—o) " (b—elb—a) ~ (c—ajlo~b}

_a[x-—b}(x—c}Lb(a:—c)(m—a)+c(x a){z—b)
{a—bjla—c) " (b—c)p—a) ' {c—a)ec—b)-

1ll

x.

lli
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B Pra]?e -that:there_camot-be two dsﬂ‘erent guadratic expressions in
& which have the values 4, B, (! when x has the values &, b, ¢; and
s,ht)w that the ong quadratxc that: bas theqe values is

s m—be—e) | L {e—e)z--a) (z—alz—&)
. (a—-b}(a—s)+ b=eib—a) ¢ cZa)e=b)"

HINT If pa? -t gr4r and #'z?--g’z-F" both have the required values,
then (p--p’ ng +ig—g' e+ {r—r') is zero when z has the three distinet
w.lueg a, b, e.

. _ ~
9.* Prove that there is one and only one cubic in x that FasN\lho
values 4, B, €, D when » has the vakues a, b, ¢, d; and wr]tg s{own

. thig cublc by ana,logy with the result of Example 8. ¢ '\

-10. Prove tihat if m:“—]—bx‘*—[—m:—{—d containg {(x—1)® aﬁ,a fa.ctor, then
b= d—2 and ¢ = a—2d,

11. Prove that, if ax“—[—lm:” +bx+d contains (:v—sl‘}}‘as a facbor, then
g = d = —ph,

' 12 Prove that 1f «'—pr+g contains a fﬂ.ctbr (a, e)?, then
- 21p% = 256¢° a.nd 38 =q

13 * Prove fshat if 27}34 = 25693" phen o —pxi+-g contains a factor of
the form (&~ c)2.
Hivr. Put g = 31, O

6. Polynomials in Ao or more variables
6. 1 J?HEOR]:.M ‘6\\] f ..., c 4., ¢ are constunis and  +

ar® "W+by2+29x+2fy+c - ;

j\~ = a'a-- 20wy by} 29 % - }—2f ?; e,
then tkqwre.spondmg coefficients are equal; that is,

a,:a, k_h’ vees e=2c.

\""PRDOF Eéﬁl& expression may be considered as a qu dratic
m & whose coelficients are polynomials in y; for examp e, the
first expressﬂqn is

ax®+2x(hby+g)+ (b2 2fy-+e).

Since the two xpressions are equal for all values of 2 and » Y,
we have (by Theokem 5, Corollary 2)

a=a, ky+g=Ny+e, bPFAyte=by+2f Yyt
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But sinee hy--g = A'y+g’ we have (again by Theorem &,
Corollary 2) A = &’ and g = g'. Similarly, since

b+ 2fyte = Vyrof iyt
Wehaveb_..b’ =fe=c¢c\ ' :
.Hence the correspondmg coefficients are equal

CoROLLARY 1. The theorem remains true when t,ke polymomials
~are of any degrees in x and y. : £\

COROLLARY 2. The theorem remains tme when the polyrwmmls
are of nny degrees in any number of variables, x, ¥, 2,...; (ﬁat. 18,
THE PROCBDURE OF EQUATING COEFFICIENTS CAN BE ABPLIED TO
ANY TWO POLYNOMIALS THAT ARE EQUAL IDENTICALLY

Cororrary 3. Two polynomials of different c’té}fpes cannot be
zdentwally equal \
| K7

7% Identities' a point in some méthods of proof
In order to prove that two gwen polynomlals say flz, y} and
F(z,y), are identical, it is often, ¢onvenient. to suppose in the
course of the proof that some ‘third polynomial, say P(,y), is
not equal to zero. We, ahall show that the two polynomials
f{m y) and Flx,y) are e‘qual for auL values of z and y if they
are equal whenever\R(x y) is not zero. We shall give the argu-
ment in a simple“gase; but the reasoning is quite general and
- the more advamced reader will find it worth while to set out

the &rgument in its general form.

Sup@e 'we know that _
Nt Ohay-+- by 2gz-+-2fy-+o W
2\ “\’ : == a'a?--2h'zy -6yt 29 x—i-zf J+0 (A,

whenever lz-+my+n % 0. Then, for any given value of ¢,
(A) = (A’) for all values of 2 except, possibly, ~{my-+-n)/l. It
follows that (Theorem &, Corollary 2} -

¢ =, WAg=HYTS, WA = VY,

andsoa=¢, b=~ ..c=c.
From the equa,hty of the corresponding coefﬁclenta it follows
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that (A) = (A’.) for ALp values of 2 and y and not merely for
those values which make lz+my-» different from zero.

The general theorem may be proved m the same way. It
runs: : .

TeROREM 7. If two polynomials fx,y,2,...) and F(z,¥,2,
are equal for all values of the variables which satisfy @ given set
of inequalities

Pl(x,y: za'?‘) # 0: rrey '"Pk(x’ y;z:"') # 0’. N

where each P denotes a polynomial, then flx.y, zxj\ and
F(x,9,2,..) are identically equal. ~\ by

The theorem is not necessary in elenientary ‘wurk though it
ig often applicable in more advanced work especmlly in estab-
lishing results concerning determinants. I£38 sometimes known
by the rather high-sounding title QH}E PRINCIPLE OF THE
IRRELEVANCE OF ALGEBRAIC INEQUALITIES’.

The following is an example “of its application. From
Examples I B, 7 (i) we seelon multiplying throughout by

{(b—c)(c— a,){a——b), that whenever a£bFec,
(—oe—be— @+@~mw )5—0)+(a—b)a—a)(@—b)
\\ - = —(b—c)(c—a)la—bd).” (1)
Regard (1) as' the equivalence of two polynomiale in the four’
variables )\, b, ¢. The equivalence has, so far, been proved
sub]ect \ihe inequalities b—¢ # 0, c—a # 0, a—b #= 0. By

Theorem 7 the equivalence is true both when these inequalities
axg, satisfied and when they are not.

'S M

EXAMPLES IIc

1. Given
axpress b, ¢,

at ax®+bely -+ cxy® - dy? is a numerical multiple of [m yE,
in terms of a.

. 2. Given that
aw? - 2hay -+ b
prove that 4{bc—f%)

2420+ 3fy+o = (lr-tmy+n)le+my-+ ﬂ’],

—{mn’—mn)t.
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3. Prove that there are two values of f for which
.' _ 2t — Byy — 3y —x+2fy—3
is the product of twa linear factors. State the two values of I
Hint. 2ut—bey— 3y = (2z-+y)z—3y), 80 that the two linear factors
must be (2z+y-+p)z—3y—3/p)-

4. Find the values of @, b, ¢ in ordor that ax?-f- 2bay +cy*+ 2xt-dy4-1
may bo a perfect square {lw L my+ 1)k

5. Prove that there are two values of & for which ' A
: 9yt — 3yt | 428 4 yz -+ bzr—hay \
iz the product of linear factors, and find these linear factors. (:X
O
~ ¢
D
”} L &
N\
o
O~
QY
C{f&
AN
N\
s
oON
2N/
\.J
PRLs,
/\‘n./
N
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POLYNOMIALS: EQUATIONS

1. The roots of an equgtion
1.1, Tet
J®) = 05‘3”‘{‘1"137“ Htp, (P, #0)

be a given polynomial of degree » in i, Then the values of x
for. _whlch Pux”—i‘}?ﬁ“_l‘l‘---‘f‘Pu =0 O D

are called the zuros of f(x), or the Roots of the eqd&tlon (1)
We refer to (1) as ‘an equatlon of the nth degree in x° or ‘an
equation of degree nina’ RY :

By Theorem 2, if g i5 a root of (I) J)icontains x—a as a
factor. If x—a is a factor, but {x— a)’Jdsnot a factor of f{z),
‘we say that @ is a SIMPLE ROOT or ‘@non-repeated root. If
{x—a)?is a factor, but (x—e)* in not we say that ¢ is 4 DOUBLE
ROOT; and =0 on for a trlpie root or, generally, an r-ple root,
that is, a root & such that {x a)’ is a ' factor of fz) while:
(x—a)+! ig not. \

Suppose that e is 3 double root. 'lhen we may write

f(x), F}:otw aP(zn-2hq an34), 2)

_ where py(zn 2+g\ wr=34 .} is the quotient when (x-—a)2 d1v1des'.
Fle). If no@ &b, a—c,..., =—k are n—2 distinct factors of
ne 2—!—9’1'(““3-{- ., we may write {(by Theorem 3)

\\ ' f(-’ﬂ*)—i‘?o(x-*a)"‘(w—-b)(x*c) (x—k).

In this oase there are only n—1 dmtmct values of @ which
\ \ gwe f{x}, a polynomial of degree , the value zero. In order
to have n rooti for an equation of degree n Wwe say, in such
8, case, that the rwots are e (twice}, b, ¢,..., k. :
Thus, since at—\2x*4-1= (z2—1)2 :,(x-—l)ﬁ(x+1)2, we say
that the roots of the equation

are 1, I, —1, —1, .
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Jenerally, if
Ppdttp LA, = pole—a)(@—b)..{e—k), = (3}

whgre @, b,..., k are n numbers, eqizal or unegual, we say that
the roots of the equation . '

pﬂ.mn’-[_pl x?_l_i_‘ v "+_.'pw =0
are @, b,..., k. :

1.2, Tt can be proved, though not by any known clementarys

- and easy method,T that overy polynomial f(x) of degree n gan
be expressed as the product of a constant and » linear -f&{'d‘t@}s
of the type 2—a, €—b,..., 2—k, the factors being not necessarily
distinet and the numbers @, b,..., & being either red"umbers
or complex} numbers. The numbers a, b,..., & g@;ﬁhe 1 roots
of the equation f(z) = 0. SRS
. : A
2. Relations between roots and cqeq'ﬁ}ients; quadratic

and cubic equations AV

2.1. Quadratic equations. Consider first & quadratic equation

ax*—l—bx—f—g:ﬂvfh (& #0),

whose roots are « and 3. Then

- aztjdpto = alw—a)w—h). m
But (e AW —B) = 2P (a-Br-Hof |
and 80 'p@é-?}— bt = ax?—alat-flrtasf.

On equg.\tgig’eoefﬁeients {(Theorem. 5, Corollary 2},
..“§" o . —a{at+B) = b, acfi = ¢,
’QB:‘\?{' -. . . G’."jr‘B: _g, uB::g,
V '

We sum up these results in Theorem.8.

# Thoe erux of the difficulty iz to show that every equation of the form

o Py It Py = O (P 7 0) hins at jeast one root. Once this is estab.

lished, it is not: difficult to show $hat the equation has n roois and only n roots.

. ' I The theorem is not true if we confine ourselves to roal nurabers, such as

I, —%, ~2, =, For example, there i& no positive or negative number whose

- square is —1, so that the equation #24+1 = 0 has no Toot amang the positive
or negative numbers. We introduce complex numbers in § 3.
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THEOREM 8. If the roots of the quadratic equation
artlbrlc =10
are o and B, then
b ¢

a_{-.ﬁ :..-:,- _E’ aﬁ = —, . (‘5)

@

Conversely, if a and B. are given 1o be the roots of a quadratic

equation, then that equation ist 2+ prtq = 0, where
p= ‘4(05—[—'_3): g == aff. ~

We shall work one or two examples on the application" of
Theorem 8. Before doing so we call attention to the faef)that
in many problems of mathematics the two roots of.a}ﬁua,dratic
equation are so closely united that the problem #iust be worked
by handling both roots at once, that is, byﬁl{si’rig Theorem 8,
and must not he worked by the ugly and Ipng-winded method
which consists of solving the quadratic e;:g{s}tion and substituting
the values of the roots. Especially isthis the case when quad-
ratic equations oceur in the probiéfas of analytical geometry.

In elementary work cne solves-a quadratic equation; in ail
work that is the least advanced'in character one should avoid
the actual solution of the qﬁ‘aﬁmtic equation whenever possible:
instead of solving the equation, one should ‘suppose the roots
to be « and B’ and theén make nse of Theorem 8.

)
2.2, Cubic equations. Consider next a cubic equation
K ar*+bxl4-cx+td = 0
whose roals'are «, 8, y. Then
(N 2 — - —

= a@-+ba tar-d = als—o)w—)r—y).

<
=) —)e—)

= (z—a)fe®— (B+y)z1-By) | (3)

= 2 —2¥a+B+y) +2(By+yat-of)—aBy. (4)
T The equation 2°+ px+g = 0t has the same roots as the eguation
axttoprday = 0; )
for a ‘root’ i3 & value of x that makes #2-+pr4¢ equal to zern, and such
& valuo also makes a{x®*+ px+g) cqual to zero whatever value is assigned to &.
f In working out (3} to obtain (4), pick out the one term %, then pick out
all terms in @ then all terms in 2, and, finslly, the term independent of .

Note that we write Syl yvi-af and wor ®f+ o+ By, or any other non.
symmeirical arrangement.
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Thus }
- ardba e td = a&“~a(a+ﬁ+?)x“’+a{ﬁﬁ yatof)r— awﬁy

and, on equating coefficients (Theorem 5, Coroﬂary 2),

b d
0“|",3+.7 =T Bytyatof = E’ offy = “a
These results give
' N
TumorsMm 9. If the rools of the cubic equation A .
) ¢
g+ b4 cxd == 0 o\

are a, B, v, then _
b € ':: = <1
e pty = - ﬁy+ytx+aﬁ = ﬂﬁ?{*r PO C)

Conversely, if a, B, y are given to be the wo\g of a cubic eguation,
then that eguatwn 15
S qx+?: \)
where

p=—(tfty), ¢= ﬁ‘}ﬂrw-!-aﬁ r= —afy. (6)
Notice the plug and mmus signs in (5) and (6).

2.3. Worked emm@zé

PrOBLEM 1. G@Xn that « and 8 are the roots of the quadratic
equation ax”—{—ba;—Fc == 0, express a2+ﬁg and od+F° in ferms of
@ bc. N0

“E)aflly, the problem is that of expressing a?-+f? and o33
in t s of {x+ ) and off, since we know the values of the latter in |
i’(én‘nﬁ of @, b, ¢.

'"\, SULUTION. Since « and § are the roots of the equation
axitbrte =0, ‘
b

(x—l—ﬁ = “‘-a) Q:B = g'.
Now ' a2 = (a+B)?—2af;
e b2 2ac

b2
202 )
a = A
+p = p p
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Mo, = (a+ﬁ)(m —ofif)
= “&{(d—i—ﬁ)z—dﬂfﬁ}

BB 3¢
T e

b(b2—3cw)
———

ProBuEM 2. One root of the equation ax2+b'c -6 = 0 28-fabfee
the other roof. P?'ow that 252 = Bac.

" \
SOLUTION. Let the roots be o and za Then O \
Bame =0, 22=C, N
@ a
B g 3
a? 20\
262 = 9ac, ("

'l’RﬂBﬁLM 3. Given that o and Plare tke roots of the equation
+ 5+ 10 =10, construct the eguaiwn whose roots are 20— 38 and

) ﬁ_ 3. & : : :
SOLTTION, By hypothefns, a—{—ﬁ = —5 and of = 10. Hence

(20— 3B)N(IB—30) = —(at-B) =5, (1)
and (%-33)(333}3@) = —6(*HfN+138 .
. X L\ = —6{(a+5)>—208}+ 1348
R \) = —6{a+F)*+ 25«8
AV © = —6.95-1250 = 100, (2)
By (Ilmﬁ (2) the reqmred equation is (converse of Theorem 8)
& — 5100 = 0,

PRUBLLM 4% G’zwn that «, B, y are the vools of the cubire
"~ rgmtwu xaw—x~-}~5x 3 =0, find the equalion whose roots are
"By, yFo atp.
SOLUTIO’\T\ By hypoth%is :
otBty =1,  fBytyoto=5  ofy=3.
Bty =1lwe  yta=1-8  atf=1-y.
and we reguire the ‘a_lquaution whose rootst ate 1—a, 1—8, 1—y.

f We could work with\'léi‘\-f-y ingtead of 1—~«, and so for the other ruots;
but the work would be more'gnerous. .

*,
4
\
Y
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Now .1*05—5-— 145‘{-1—.’? = J—(a+f+y) =2. (1)
Again, (=B 1—y) = 1—(B+y)+8y, |
and so : '

(=B —p+(1—p) (1 —a)+(1—a)(1—H)
= 3—2atBty)+pryataf

= 3—-2+5=286. (2}
Finally, R 4
(I—a)(l— ﬁ)(1—7) = 1— (B 9)+ (By-+yataf)— L N
=1—145—3=2. O6y
Hence, from (1), (2), and (3), the required equatmn*ls sby the
converse of Theorem 9, m\\

— 922 1.62—2 = 0.

2.4, Alternative method of solution. Thé, ‘premouq met]lod is
not always the easiest and the followmg\nwthod is well worth
mastering. As a general rule, it is s&fe to say that the method
now to be given should be used Whene\rer it is applicable. On
the other hand, the method of § 33 will suffice for all elementaly
examples.

- Let o and 8 be the roo@s of the equation

¢ u? b te == 0, Y

T (1) put y == a4, 16, & = y— 1. The equation becomes

N a(y—1)2-Hbly—1)+¢ =0,

ie. 07 apt(—2a)y+ta—bte=0. (2)

"The f’&:uts of the equation (2) are a+1 and B-+1; for the
va]ues ‘of y that satisfy (2) are connected with the values of =

: that satisfy (1) by means of the formula y = -1, and the
\two values of x that satisfy (1) are « and B,

Hence, in order to find the equation whose roots are a--1
and f+1 we pub y = x+1 in (1) and write the result of so
doing as a quadratic equation in y. The same. method applies
when y is any function of x; for example,

(i) the equation whose roots are fo, 38 s obtained by puttmg :
¥y =t ie x =2 the result is day®42by+c = 0;
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 (ii)-the equation whose roots are o2, B2 is obtained by putting
y = x* in ax®+4-br-+c == 0. This gives :
’ - ay+e = —bz,
and so (ay+c) = b¥? = bzy,
Thus the required equation is
a’y? +y(2ac—b2) 4% = 0,

2.5. Alternative solutions to Problems 3 and 4.

ProBrLEM 3. Given that « and B are the roots of the equation
22-5x+10 == 0, construct the equation whose rools are 202¢'3B

and 28— 3a. : N
SoLutroN. aff = —5, af = 10. (‘,’}‘.x,

Thus 2a—38 = Sa—3(a--B) = 5a+15/)

and 9B 30 — B5B—3(at-B) — BRITS:

In 22452410 = 0 put y = 5x+15, Wga{g@t
r-a(J"15)g+y—10+KQx"— 0,
ie, 30y-}—225—}—2a(y-\~5) =0,
ie. C 53;—!— 100 = .
The roots of this equa,tlon &re 5x+16 and 5B—i— 15; that is,
2a—38 and 28—3a. 3" :
ProBrem 4. Given t@,t , B, y are the roots of the cubic equalion
—x2—i—5's 3= {\ﬁnd the equation whose roots are B4, y-+a,
at+8.
SoLutIoN, ¢ " atfty =1
We theref@{e requlre the equation whose roots are I—ea, 18,
1—y. lﬁ\’r:3 2?45 —3 =0 put y = 1—=z, ie. x =1—y. We
ST G-y -3 = 0,
et 26yt —yt = 0,
\ w"hlch is the equatlon required.

_ Examrrrs 11T 4
1. The roots of the equation 2% —~5x 410 = 0 are « and §. Find the
valnes of o252, o + 52, o%f+aft.
2, The roots of the equetion #*— Tz 9 = 0 are o and ﬁ Find the
values of {x— B} and oA
Hinr., {x—f) = d_'_ﬁ}s daff; of Lt = {02 +-B2)2 — 2a282,

S
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3. Given that o and.f are the roots of 2?—5x+43 = 0, form the
equation whose roots are
{t} a® and 8% {ii) 3+ and 34-6; (iii) 1/x and 1/8;
(v} 4+ 38 and 38+4a.
. Hiwr. (i).By § 2.3; (ii)~(iv) either by § 2.3 or § 2.4, preferably the
atter.

4. Prove that, if ¢ and § are the roots of the equation aa®4-be ¢ = 0,
then

o B = b*—2ac_, B — (62—2(30%:"—2@20’. N
at @ N
6. Given that x and § are the roots of the equation a:cg—}—bx—]—é'ﬁ\ﬂ,
construct the equation whose roots are \,
{i) 1/x and 1/8; (ii} @41 and 8+1; (iii) 2o§ Eu:fd 28;
(iv) a*and §2%  {v) o® and g% (vi) o8 énd of®.
6. One root of the equation ax*4-brt+c = Qis thé sq\ia're of the other
root. Prove that & = ca{8b—c—a). o\

. The two roots of the eguation ax2~} bmﬁ\; = ¢ differ by 5; prove
that 42 = dact 28a®, \ .

8. « and g are the roots of the ec;ué,tmn 2xt+d4z+ 1= 0; praove that
o'+ B = 8] and that the roots of Lhe \equation 32— 34z 1 1 = 0 are o*/8?
and 8%n?.
9. Prove that, if o, 8, v are the roots of the equation
4 .w“ 3x24-2x4+1= 0,
(i} 2, 2B, 2y ars, bhe roots of 28+ 6x2+8x+8 = (;

(i) Yo, 1/8, 1{}) hre the roots of 284222 43w+ 1 = 0;

(iii) o2, fB°, :&@‘re the roots of y(y-+2)2 = (3y+1)%

10.* It ﬁnd B are the roots of the equation 2+*—3«+4 = 0, prove
that thé tion whose roots are o —f and 82—« is 82% -+ 262193 = 0.
Prowa that o4 8° = 123/32.

oo HI'N'I' aE_I_‘BS {a2+ﬁs){as+33)_asﬁz(a+ﬁ
11.* Given that a, £, y are the roots of the cubic equation
gt —gl-5x—3 = 0,

s"

find the values of
as,i_ﬁe_i_yz; oc“—f-ﬁ“-[—y% a—L_i_,g—l_l_,},—l’ Bsys_[_.yzas_]_aeﬁz_
Hinr. o2 +04y? = (a+p+y) =28y +yetaf)
oS+ —Bafy = (atB+yNat+F -+ —By—ya—ap).
Byt tytat +oift = (By-tyata)—20BylatBty).

486% D
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12. Gwen that o, B,y are the roots of the cubie equation

. _ _ 2x=+ dx--7 = 0,
* find the equation Whose roots are
' @ Yo 1B, Ty (it) 14a, 148, 1+y;
i) By, yta atf (iv) o2, %y
13. ‘The equatlon 3+ 3Hze-+ & = 0 has two equel roots. Prove that
GELH4H = 0.
Huwe. Let the roots be «, @, B, and use Theorem 9. _ A

14, The roots of the equation *+3Hx4- & = 0 are in arithmetical
progressmn. Prove that & = 0. . ¢\ \

HII\T Let the roots be a—38, v, a+8; or wse oty — 2ﬂ .

15.# Prove that, when a, # 0, the transformation’ y = 2+ (ayfag)
changes the eguation ayx?t-8a, 2?4 3ay 21 gy — 0 idté/an equation of
- the form o}y + 3a, Hy+ @ = 0, where ¢ = 2a3-$a)a, a,+alas,.
 Deduce thag, when the roots of the equation ivic are in arithmetical
progression, 20} —3e,a, 0, +ata; = 0, 9\
\ W
3, Formal solution of quadratic equations
3.1. Let a, b, ¢ be given constsmts @ 7 0. Let

am3+‘bx+c = {. (1)
Th ¢ |
en ”‘\ :v2+ = —
\ byz - p2
and \:c —_r.°
D x+(za) e
That is, ’ aq OV 0P—dac |
Henc ' 35'{-—*— :f:‘\/(fﬂ dac)
. 2@ Tr
\za’nd 56 o= "_bi_g_(bi—,‘ﬂ’), . (3)
. @

When 62— dac is positive, we may write b2—dac = N?, where
N denotes the positive 8quare root of b—dac. The two roots
of equation (1) are then';

L 1
%(—- - }\ and -2—5(——5—}\?'}.

"\
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If 52—4ac = 0, the equation (1) may be written, as we see
12 '

from (2}, in the form (x—[—;—a) = 0, We may, if we wish, say

that the equation has only one root, namely, —b/3¢; but it is
more convenient, for the purposes of later applications, to say
that the equation has two equal roots, or a double root (cf.
§1.1). '

When §2—dac is negative, there is no ordinary elementary,
number whose square is 5*—4ac; for the square of such a number
is always positive. We can either agree to say that no 'v&ahle

. of 2 can be found to satisfy (1), or invent a new type of Qumber
whose square shall be equal to the negative numbez b%— 4ac.

3.2. Introduction of complex numbers. For a lobg'time every-
one adopted the first alternative: they agreedMo say that the
equation had no root when B2 —dac wag \phgative. But this
brought many difficulties in its train &nd, at length, mathe-
maticjans adopted the second alterngtive : they invented a type
of number whose square would hg\a negative number.

The simplest procedure fm.mventmg such a number is to
say boldly let there be a number whose square is —1; let it be
denoted t by the letter i; and let it be supposed that this symbol
contbines with other yfnbols such as z, a, b,... according to the
usual rules of algeb@” for example,

241 = ita,
P\% TXt =X,
SO © {a+b)i = aitbi,
and 50ah.)
On, ‘fhs procedure we make the HYPOTHESIS
\There i¢ @ number, denoted by i, such that % - -1, and if
\tms any other number, (a5)? = —a?’;

we distinguish between the types of number thus:

(1) the numbers of ordinary elementary work we call REAL
numbers ; they may be positive, negative, or zero;
1 1 fact, it was the Greek letter ¢, ‘iota’ ; bub the book-wziters and i]rinter:s

afterwards preferred the English letter, In physies /{—1I) is often denoted
by #; this becamae the letter.: is then the a,ccepted symbol for the electrical

current.
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(ii) if @ is & real number, we call a2 an ]:MAGIN_ARf number;

{iii) if @ and b are real numbers, we call a{bi a compLEX
number. '

We make the further FYrOoTHESIS

s can be combined with other symbols according to the ordinary
laws of algebra.’

3.3. Nature of the roots of ¢ quadratic equation.

With the number ¢ at our disposal the roots of the quadfaiic
equation can be found even when »?—4ac is negative. ‘Sﬂl\ppose

b%—4ac is negative, and let M be the positive squade Foot of -
dac—b% Then, by (2), y >

b ] ﬂfg 2 ...:
(o 3a) = = T (2

ool
N

4t
' ' b M '
Hence = )
x+2a - 20‘,\\
and the two roots are o\
—b+Mi (S —b— M
20 e,md 20

where M? = dac—5b2, 3N .

Thus, in all cases, thelfvots of the equation aa®4-bxt¢ — 0
are given by the fopmula
O bt b —dac)
. \\ T = “_'T——- .
It is con\ie\nient at this point to state the results as a formal
theoreu\}“'

’ HEOREM 10. T'he equation @ -brtc = 0, where a, b, ¢ are
re@l\iumbers, has two roofs, Further,

AN() when b2 —dac is positive, the two roots are reul and different;

(ii) when b2—4dac ig zero, the two roots are equal, both being
—b/2a, which is a real number; '

(iil) when b%—dac is negative, the two roots qre complex numbers.

4. The definition of complex numbers

Th'e logical foundations of the method adopted in § 3.2, where
we simply made hypotheses that would enable us to write
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J(—1) =1, 4% = —1, and to combine ¢ with other symhols, are
open to some criticism. It is best to make a fresh start and
define complex numbers more carvefully than we did in § 3.2,
This we shall do in Volume I1.

Meanwhile, we note the following facts:

(1) the algebra of complex numbers is precisely the same as
that of ordinary (real) numbers, save that 42 is replaced
by —1 whenever it ocecurs;

(2) two complex numbers a+4-b¢ and ¢-+di, where a, b, ¢, d
are real numbers, are equal if and only if @ = c ’a}nﬁ

b=d; . O
(3) the number a-—bi is called the coNITGATE cgﬁn&PLEx of
the number a1-5%; R4

(4) the number -,/(a2+b%) is called the\mopuLUS of the
complex number a-+bi; it is denote(%by le+bil. Also
(a—b2)(a}b2) = ¢*+ %, whichis theﬁquare of themodulus.

(5) a complex number may, if cohwenient, be denoted by
a single symbol, such as z, Z; @, p, or any other letter.
If z denotes the complex»number z+yi (where z and ¥
are real numbers} we refer to x as the REAL PART of z,
and to y as the TMAGINARY PART of z. The notation lz|
then denotes the~ camodulus, 4 f224-3%), of the complex
number. \\

{6) When, by ubibg (2) above, we deduce the two facts a = ¢
and b =@ Arom the equation a-}bi = c+di, the pro-
cedure\ﬁ commonly referred to as ‘equating real and

mmgmary parts’,

5. ‘Qal(:ulatmns involving complex numbers
““We work out the details of a few simple problems that involve
he use of complex numbers,

ProBLEM 1. Prove that (i) the sum, (ii) the difference, (iil) the
product, and (iv) the quolient, of the two complex numbers 3-+-4
and 2— 31 is itself @ complex number.

Servrion, (i) Sum (3-+1) {-(2—3¢)

= 34-4-F2—3 = 5—2i.
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(i) Difference. B
(3+1)— (2—8) = 3-4-i—243i == 1+ 44,
(i) Product. - :
(31-4)(2—34) = B— 94+ 20— 3¢
| = 6-—Ti+3 (if = —1)

: — 917 _
{(iv) Quotient.t ' O\
| | S4i  (3+i)2+34) A
53 T (273424 3) R
6+411i—3 AN
= Tire 0

3 11, ¢
B ERBTRIIANS
AY; : '
Nore. The same results hold for thesiim, difference, product,
end quotient of any two complexWdmbers. In particular
(a-+bi)(c+di) = (ac>bd)+i(betad),
a result that follows at oqgg:’éﬁ writing bdi* = —bd, and
adbl (@t bie—di)
{x{—a’.é " {e+di)(c—di)

(L _ (aotbd)bilbe—ad)

o\ = w2 |
2O~ _ aotbd , bo—ad
K7, T dr g

) '
P@B‘LEM 2. Find the quadratic equation whose roots are 2--3i
o2 3.

N
Y

~\J ‘Soturron. The equation is x®*}px+q = 0, where
/o P o= (3L 2 B) = 4,
and g = (24-36){2—3i) = 449 =13,
The equation is ~ 2?—4z+13 = 0.
ProprLEM 3. Prove that (14-4)2 = 2i, (144)3 = —2(1—i),
e
T Notice tl_laé'-\l{2—3i){2-{- 3i) = 4942 = 419,

A
N
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SoLvTroN. (1442 =142+ =14-2i—1= 2i;
(144)8 = 1-4-3§-1-3§2-4-43
= 1B =8 i = — 3424,
(1-!-%)4 = 14+-dj-| 63249392
— 1440 6—4it ] == 4, _
Note, The values of 42, 43, 4%, 45... are given by i* = —1;

P =i = —1; = —d.i=F1; ¥*=14;.... That is, ¢ =1,
2=—1,8=—i, =41 =41, %= ul 17 =2 —1, and/\
so on, the sequence i, —1, —¢, -1 repeating itself. A

ProsuEM 4.% Prove that the three cube roots of Uity Y qﬂz
w, and o, where PR

@ = 5032—-{—@31112—17 = mlft?’js, 7\ L
3 2 LV

and that 14wt w? = 0.

SorurioN. Let z be a number whose cule.ds cqual to unity.
That is, T
Then. CB—1=00" - (1)
ie. : (z— 1)z 422D == 0. (2)

‘Thus,t either z =1, or zﬂ—}—zjgizﬁ 0.
The two roots of the equa‘utic')'n 242+ 1= 0 are given by

Ao _—lﬂ:v( 3
) # X0 ; 9
On using the facts, a\ : _
cos 2T — .} \Mﬁgﬂ _ Y osdm - 1 | sin T _ V3
BET g 327 3 2 3= T

these txx"m;rots may be written ag

J;.\ 003-2—4—@31112—' and 0034—-{-zsm4—w
‘,,\‘s;' 3 3

\’"\Mbreqver, denoting the first of these by w, we have
s = {08 2 1 isin 27|
we = = o
.3 "3

2
= (0032 23 —8111323 )—1—23 sm% cosg
dg . . 4w '
= .005?-{-15111?,

T+ When axb = 0, either {i) & = G or {ii} b = 0 or (iii) both @ and b are zero.
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go that the two roots are w and «?, and the three roots of

#=1are 1, w, and w’

Finally, since @ is a value of z that satisfies the equation
142422 = 0, 1t otw? = 0.

NotE. The reader who intends to read Volume 11 should lay
no stress on the present solution of Problem 4. The problem
is at once simpler and more illuminating when the later theory

has been mastered ~
ProBLEM 5.% Find reul numbers a and b suck that %\
' {a+bi): = 3—{—43. ' ' '\:\ -
SoLtTioN. If (a1+bi)* = 3444, then N

@t 9abi—bt = 3+ 4i. LY
On equating rea,l' and imaginary parts {eft f?) of § 4},
—bt=3, 2= 4. (1)
The simplest method of solving ‘t.}ie equations (I) is to note
thata = 2,5 =11is an obkus solution, whence @ = 2, b == 1
is one solution and @ =~ —2,%"= —1 is another.
Assuming we have notyheen quick enough to see the obvious
solution at a glance, we can procced thus:
From the second Bquatzon of (1}, 5 = 2/a, whence, on substi-
tution in the ﬁx{f\equatlon
_ ¢ —3dai—~4 =0, _
ie. ;’\(a2 4}(&2—[—1)—0 a* =4 or —1,
We want the real number a. We therefore discard the solution
a % 1 and obfain g = 42,
\When a = 2, the equation b = 2/z gives b = 1;

" When a = —2, the equation b = 2/a gives b = —1.
The solutionis g = 2, b =<1 or g = —2,b6 = —1,

, Examprms IIT &
1. Prove that

() B+ +{T—6i) = 105 = 523,
(i) 2{—34-T-5{ =43,

' _ Gii) (34+D(T—61) = 27114,
{iv} (2@2——5}(4?2_—3} = 7961,

(¥} {2—4)(3—4) = B(1—i)
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2. Prove that i* = —¢, and that
(3% 5)(22 4+ 8) = 9198,
—3i%)(3—2i%) = 9194,
3. Prove, by the method of § 5, Problem 1, Guetient, that
. 3+ T—4 -4 T+
(i) =

E

35T 5 ' 2—i b
{ll) 6—5¢ _2_§ 31',’ 6_—]—_5_:5: _ 28431
T2 18 315 13 °
i) 6-6i 827 8150 84270 N\
3f2i 13 3-% 13 N s
: AN
4, Prove that '\ "

() 1243 = V13, |2—3i] = ~13, (2+3i)(2— 3@) = 13;
(i) [3+4i = 5, |3 —44] = &, (3+49)(3=> 4i) = 25;
(i) [5-+4] = V26, |5—3] = 28, (5+‘th.)~«,) = 26.

5. By means of the formula (3) of § 3.1, find the wols of the quadratic
equations [do not work out ~37, efe.] \.
(i) =*—Tx-+3, {11) ’.:‘3‘ Te+13,

({ii) a?—5z42, (m Vet BT,

6. Find the quadratic equatims‘y?ho&e roots are
(i) 243 and 2— 3, OV (i) 2437 and 234,

(iii) 3+4-+5 and 3—+5, 3% (iv) 3+i+5 and 3—iv5,
(v} 3{1++2) and §(1_\~J2), © (vi) H14iv3) and H{1—iv3).

7. Prove that - '\i(i}-]-el)(2—l—i)(3—]—i} - 105,
N (T4a)142iH14-38) = —10.
8. Prove 'ohflﬁ
pWr i Lfi 24 344
AYT=
9...@\02% that (1+3)° = — 8.
ﬂfNT Find {144} and cube the result.
\ 10 * The complex numbers Z and 2, where & = X+ Y4, 2z = &-| Wiy
and X, ¥, x, y are real numbers, are connected by the formula
Z241
Z—1
X2 1¥8—1—2Yi
(X-1)4-7% 7

z =

Prove that ' -ty =
and deduce that

Xer¥er—-1 o — —2¥
—@Eoeaye o YT @R

e
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11.* Prove that, when a is 8 complex cubs root of unity,
(2+bew -+ cw?)(ad-bo?+em) = a®+ b2+ 2 —be—ca—ab,
(a+b+cle+bwtew?)atbwdtew) = ab+b3+ 02— 3abo.
12.¥* Prove that, when w is a complex cube root of unity and
T = a+b, ¥ = atdw, 2 = at+bo?,
B R |
6. The coefficients of pelynomials restricted to be real

Although :we have introduced complex numbers in order to
find the roots of such equations as 341 = 0 or 2| 2x+ 3= 0,

we shall not in this book consider such equatlons a8

(240074 (34 diJo—(2—0) = 0, .\
or such polynomials as D
(34—%)9:3“{2—}—5@')&:3—33:—&—4;7':‘.}\
It is only on rare occasions that polynompals having complex
numbers as cogfficients come under consideration; and in this
book we shall exclude them altoget}iér
The coefficients of all polvnomlals that occur in this book
are to be taken as real numbers THE FACT THAT a, b, ¢,..
APPEAR IN THE TEXT AS (IOEFFICIEWTS OF A POLYNOMIAL WILL
IMPLY THAT @, b, ¢,... ARE R‘EAL NUMBERS ; no explicit statement
that a, b, ¢,... are I:eeJ will-‘be made unless the fact requires
particular stres \The alternative would be a . constant and
tiresome reiterbtion of such phrases as ‘where a and b are real
numbers’,
Thus, a\lthough the roots. of an equatlon may sometimes be
complex, numbers, the coefficienis (as far as we shall be con-
corned) will not be complex numbers.

TR Y
&
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CHAPTER 1V
QUADRATIC FORMS

1. The sign of a product of factors

Tn this section a, b, ¢ are given numbers, ¢ is lesg than b, and
b is less than ¢; in symbols & << b < c.

1.1. The sign of x—a. When z is greater than a, x—a isy
positive ; and when z is less than a, v—a is negative. a
Oy
1.2, The sign of {x—a)(xz—b). O
(i) When x is less than &, both ¥—a and z—5 are,m—;gatwe
their product is positive.

(ii) When z lies between a and &, » is greatel fhan @ but less
than &; the factor #--a is positive, W}{ﬂﬁ the factor x—0b
is negative; their product is nega iver '

(it} When x is greater than b both factors are positive; their
product is positive. o\

As z increases from values less! \{han ¢ to values greater than -

b, there are two points at whlch the product changes sign,

namely, z = @ and @ = batb these points the product is egual

to zero. '"\

Nore. The dmgm}n onthe Ty ay
._.: .._: I I ________ ’__
right, where z; rep.resents (i} & : b
above, z, and &, represent (ii) and (i), is useful; it brings out
the signs of;ﬁ‘xe factors. For example, z, lies to the right of a
and to%h& left of b; so that z,—a is positive and x,—b I8

negatwe

A\ 3 The sign of (x— a)(a: I}) x—c); when a << b <ec Ifzis
\e%s than a, all three factors are negative and the product.
is negative.
If z is greater than a but less than b and ¢, one factor is
positive and two factors are negative; the product is positive.
The reader will see for himself that when x lies between b
and ¢, the product is negative; and that when @ is greater than
¢, the produet is positive. '
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THE S8IGN OF A PRODUCT OF TWO, THREE, OR MORE FACTORS
I8 OFTEN AN IMPORTANT DETATL. :
1.4. The sign of (x—a)® and of (x—a)’. The square (x—a)?
is zero when & == @ and ig positive for all other real values of
" #; for whether x—g is positive or negative, its square is positive.
The cube (x—a)? is negative when x < a, is zero when z = «,
and is positive when x > a. '
2.* The positive-definite guadratic form . \
2.1. The expression & \J)
ax?2bx+-c (o # 0), »
where a, b, ¢ are real numbers, is commonly caﬂed‘a’:d‘UADRATIC
FoEM. The partieular quadratic forms whose yslues are always
positive when = is real have a special importance in many
branches of mathematics. AN
We begin by noting that a quadratic-form which has real
factors does woT possess this property’ For, if
ax®+2br+c = qle—a)z—p),
where o and B are real, (x—oc.)(’a:’;—ﬁ) takes negative values when
x lies between « and 8 and-takes the value zero when z = «
or 8; and if a:c"‘;t'?bx-{—c = az—a)?,
where « is real, il‘s\saﬁle'is zero {(which is not positive) when
= .
With theso preliminary remarks ntade, we proceed to the
formal p'm,c{fé of our theorems.

2.2\@E03EM VY a. If the quadratic Jormt

N\

\\ ax?4-2brt-c  (a £ 0)
i3 \:pole-ifi'@a for all real values of z, then
\”\;~ e>0, ¢>0, and ac > b2

Proor. Let ax®+-2bz-t-c > 0 for all real values of x. Then
there is no real value of z for which ga?4-2bx+¢ — 0. Hence
b%—ac < 0 (Theorem 10, with 25 instead of 6), i.e. ac > b2

V'V}.Jen # = 0 the value of the form is ¢, which is therefore
Positive, '

T We exclude the case ¢ — ¢ because we are discussing a guadratic form;
and the form would not be quadratic if @ were zerg,
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Finally, since ac > b* and ¢ is positive, & must also be
poesitive.

2.3. TaroreM 11 B. If the coefficients a, b, ¢ satisfy the con-
ditions >0, ¢>0 and ac > b2 '
then the quadratic form  ax®++2bx+-c
takes positive values for all real values of .

Proor. Leta = 0, ¢ > 0, and ac > 6% Thent

ax?-+2bx+c = n:a{(:e:-{-{—))2 E—b—Z] O\
: ef a a PR
b\t ge—b2 R \ B
CINGE - N

When z is real, the term (x| b/a)? is either posiﬁv\e (x = —bla)
or zero (r = —b/a), while, by hypothesis, the term (ac—b2)ja?
is positive. Hence the sum of the bemm}:withjn the ‘curly
brackets’ is positive whenever x is real Moreover, a > 0, by
hypothesis, so that the product (1) is positive.

1t follows that ax?-}-2bx+¢ ispositive whenever « is real I

Before proceeding we sum.dp the results of Theorems 11 4
and 11 B in one theorem. ~3%

TuroreM 11. T'he nécessary and sufficient conditions that the
quadratic form axztgf)x’—i—c should be positive for all real values

of x are Nag >0, ¢=>0, ac> b
Such a forin9s called a POSITIVE-DEFINITE FORM.

2.4, ‘Né(:?ssary and sufficient conditions.” We have just used,
for thefifst time in this book, a phrase that often oceurs in
alggbia. Consider the two statements,

2\ (A) the quadratic form ax®+-2bx+c is positive for all real
Nyalues of @; '

(B} @ > 0, ¢ > 0, and ac > b2

+ The steps are merely those of ‘completing the sguare’.

t It may be noted that we have used only fwe of the conditions, ¢ => 0
and ae > b*, But when these two conditions hold, then also ¢ = 0; for if ¢
ware less than or equal to zero while a was positive, the product q¢ would ba
niegative or zero, and the condition ao >~ b eould not be satisfied.

Equally, if ¢ > 0 and ac > B2, then also @ > 0. It is thus simmpler to state
the theorem with all three conditions as hypotheses.
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Tf we take at random any set of values of the constants

a, b, ¢, we cannot expect to find these statements true—they
* may or may not be true. What we proved in § 2.2 was that

whenever (A) Is true, {B) is true also; in other words, (B} is
a NECESSARY consequence of (A). What we proved in § 2.3 was
that the truth of (B) is SUFFICIENT to ensure the truth of (A).
Thus, the truth of (B) is both a necessary consequence of the
truth of (A) and a sufficient hypothesis for the truth of (A) to
be ensured. In such a case we say that (B) is a set of necessary
and sufficient, conditions for (A). RAY.

The analogous detail in geometry is ‘the theoremh. and its
converse’. For example, the theorem ‘the angles ‘2% the base
of an isosceles triangle are equal’ has as its converse ‘if two
angles of a triangle are equal, the triangle jg4gbsceles’. If this
were a theorem in algebra, it would probibly be enunciated in
the form ‘the necessary and sufficient gofidition for two angles
of a triangle to be equal is that two 'sides should be equal’.
The equality of two sides is IltGeSS&I'y--—fOI' whenever two angles
are equal the equality of the Szdes necessarilty follows; more-
over, the equality of the mdes Is & sufficient hypothesis for a
proof that two angles are equal

The reader will hav‘q learnt long ago that a theorem is not
the same as its r{\rerse and that a proof of the converse is
not a proof of th'g;heorem itself. He should learn to exercise
in algebra tl{e Same care that he has learnt to exercise in
geometry,@nd when proving that (A} is a necessary and suffi-
cient condition for (B}, he should_ be quite sure that he proves
the ﬁ% propositions

(j) if (B) is true, then (A) is true

\ ;' (i) if (A) is true, then (B} is true.

3.* Other quadratic forms

3.1. When ac > b%, but both & and ¢ are negative, the quad~

ratic form aa?+2bx4-¢ is NE@ATIVE for all real values of x.
Proor.

aw5+2bx+c = a{(a:—}- ) +ac~—b2]’

a

)
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and as in § 2.3, the expression within the curly brackets is
positive for all real values of . Butb ¢ is now negative, and so
(1) is negative. Such a form is called a NEGATIVE-DEFINITE
form. '

3.2, When ac < b2, the roots of the equation
ax*-2bxtc =0

are two distinet real numbers « and §, say. By what we have.
seen in §1.2, az?4-2bxt-c = a(x—a)(z—f) is positive for somie
values of #, negative for others, and zero when & = w, B¢\ )

When ac = #2, the quadratic gz?+26x+4c may be wri{:fen’ &3
(x—a)?, where a is real. This is positive for all real Aalues of 2
save ¥ = g, when it is zero,

3.3. Notice that
(1) ‘when the roots of ax®+2bx+t-c = @, aﬁeorea,l and different,

the value of ax®+2bz+¢ may. h&i)oslt,lve negative, or
zero, according to the partmular value z may have;

{(ii} when the roots of ax2—|—2ba:+c == 0 are real and coinci-
dent (82 = ac), and ¢ >0} the value of aa?--2bx+-c may
be positive (z % bea,) or zero (x = —b_/a

{iii) when the roots of'¢x*+-2bx+¢ = 0 are not real, ‘but are
complex, thevalue of ax? -t 2bx+-¢ is always positive if
@ is positive, and is always negative if & is negative.

p%{ 2
'.~.\‘ .

)
72 LXAMPLES\{V
"\‘
1. P \w that ot 3z 42 is positive wheh z < 1 and when » > 2, but
is negaftwe when 1 < z < 2.
~ 4 Prove that 2°— G2+ 1126 is nega.two enx < 1, andis positive
\W‘h?m @ > 3. For what other values of # is itjpositive?
. kY [Ane. 1 <2< 2]
‘8. Prove that dz?{5x—8 is positive when ' —2, negative when
~2 < & < 3, positive when ¢ > £ .
4. Prove that
(i) 32?48zt 5 is negative when —§ <o £ —1;
(it} 3wf L 8x— 3 is positive when # < —3yand when z > };
(iii) 422+ 152414 is positive when z < ~2.
. ,/
s
‘
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5. Find the factors of 43+ 19a®4- 29z + 14 and show that the expres-
sion is negative when = < —2, positive when —2 < & < —Z, negative
when % < = = —1, and positive when x > —1.

6.* Prove that a:=+ 6x4 17, x*—Hwr--42, x®— 4x—]—5 are posmve for
all real values of 2,

7.% Prove that 4x*—4x-1 3, 922+ l2x—|—5, 2x%— Bz 46 are positive for
_aCIl real values of . 3

8.* Prove that Sx— 2:::3—2 1s negative for all real values of x.

9. Prove that (x4 2)(x*—1) is positive when # > 1 and when < ’\r
but is negative when —1 << x < 1.

1. The equation 2?4bxt¢ = 0 has two real roots o a:nd’?s Prove
that 4 }-bw+t¢ < 0 when x lies between o and £,

sws‘
b2

4
o
L



. CHAPTER V ‘
POLYNOMIALS: GRAPHS

‘1. Use of the differential calculus

It is assumed{ that the reader is already familiar with the
procedure of plotting the numerical values of one variable, ¥,
against the numerical values of another variable, z, and so.

. obtaining ‘the graph of y = f(z)’.

It is further assumedt that the reader can dlﬂ'erentla,te snnple

functions of « and is familiar with the following facts : {

N\

(i) when (dy/dx) is positive, y increases as mcrea,ses and
the graph of y = f(z) slopes from ‘bott—onleft’ to ‘top
right’, as in Fig. 1;

//

(ii} when (dy/dzx) ia negaié:i{{?e y decreases as x increases and
the graph of y =X f(x) slopes from ‘top left to ‘bottom -
right’, as in, F\g}2

(m) if (dy/dz} £5,0 when z = @, and the sign of dy/d:v changes
from pﬁsmve to negative as x increases from values just
/" \“
’:&}B e
\ dx

N Fre. 2

J dy '
' p = R
1 dx
N |
e !
~O _ v
\ ) a

Fig. 3

below a to values just above a, there is a maximum at
x = ¢, as in Fig, 3;
1 If these assumptions are not correct, the reader should defer the reading

of Chapter V until such time as they are correct.
4663 £
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(iv) if (dy/d:v) = 0 when x = a, and the sign of (dy/dx)
changes from negative to positive as % increases from
values just below a to values just above @, there is a
minimum at & = @, as in Fig. 4

Aa

. ha
. |

dy _ve \L/ dH
ax _ N dx

Fra. 4

Q
- O
(v) a point that is either a maximum or a minimyn“oh the
curve is commonly cailed a ‘turning-point’J,
. R

2, 'The graphs of particular polynomials_ '\"'

In studying polynomials, and other funotions, it is often use-

ful to be able to form an idea of the gene.zsa.l shape of the graph,

. without recourse to the plofting of\@ very large number of
points. To form this idea it is sufffeient, to determine the shape
of the graph near its “turning: pomts and ‘points of inflexion’
(if any), and to fix one or, two ‘eontrol points’ which, when
plotted, show the run of the graph (a) between the turning-
points and (b) beyonddthe turning-points.

It is not a queqtaoﬁ of plotting carefully a bit of the graph
between z = —&\B:nd % = -4, say, but of finding the general
shape of thet gtaph as x varies from large negative values,
through zerdy to large positive values. The process is called

sketch{'éthe graph’ or ‘drawing a rough gra,ph ’. We illustrate
it b, \ex&mples

LXAMPLE L. Sketch the graph of _
~ “\._ Y = 3:1:5—{—32:3 30x-}-10.
N\ . SoLutioN,

&y _ 15(?4-22—2) = 15(x?+2)(2?—1)

dx .
= 15(224-2)(z4-1)(z—1). (1)
This is zero when & = —I, # = -1, or 22+2 =0, the last
being impossible for real values of x. When & = —1, y = 32
and when 2 =1, 4 = —12, and so the posmble turning-points

are {——1 32) and (I, —12),
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To find whether these points are maxima or minima we con-
sider the change in sign of (1) as @ passes through the values
—1 and -+1. Now

a24-2 is positive for all real values of &;

x-+1 is negative when x <7 -1, positive when x = --1;

x—1 is negative when @ < 1, positive when z > 1.

Thus _i _|_j|[ Z\
(a) dy/dx is positive to the left of —1; it is {L}{—)(— )"}' O\
(&) dy/dx is negative between -—1 and -F1; it iy (+)(—}—{(§—},
(¢) dyfdx is positive to the right of +1; it is (4 )(-]—,)('d—]
Accordingly, as @ increases through the value W (dy/dx)

changes from positive to negative and there ig.a(fpaximum at

¥ = —1. Also, as x increases through the value -1, (dy/dx)
\Y;

changes from negative to positive and there\is a minimum at

2= 1. O
To sketch the graph we first mark in, the parts of the graph

ETONN

ETA
NS

—

+ This notation means that when z < —1, (dy/dz} is the product of factors
whose signs are 4, —, — } and so for (b} and {c). )
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near the turning-points (P and @ of the figure) making sufficient
curve to show the maximum at P and the minimum at Q.
Next we plot three ‘control-points’, taking one value of
less than —1, one between —1 and 41, and one greater
than +1. _
T = -2 0, 2,
y = —66, 10, 86.
When these points are marked in we can complete the parb™
PQ of the graph and see that, beyond the turning- pomts ~the
curve goes off in the directions P8 and Q7T of the ﬁgur& -

s,"

3. The graph of a quadratic form ) \ 3
3.1. When y = ax?}-2%bx+c (a #£0), \\
d

Y 2axth) o

and the graph has one turning-poinfyx== —bfa.

When o is positive, the generdl ‘shape of the graph is shown
by Fig. 6. \

Fiare
A
When a 'zq negative, the general shape of the graph is shown
by Fi

F‘\(a,'h‘lples 1 and 2 at the end of the cha,pter will give the
re@de’r exercise in dealing with particular cases. In working
§ “these examplea. it is sufficient (i) to find the turning-peint, {ii) to

plot a control-point on each side of the turning-point.

4. The graph of a cubic ; typical examples
Exawprr 2. Skefch the graph of y = z3—3xJ-4.

SoLyTION.

ds :
33-; = 3223 = 3(z 1 1){x—1). . 1)
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The possible turning-values are —1 and +1.

" To find whether these points are maxima or minima we con-
sider the sign of (1). Now

-1 is negative to the left of —1, positive to the right of —1;
x— 1 is negative to the left of + 1, pesitive to the right of -}-1.

T } -

Hence? - 1 41
{a) (dy/dx) is: positive when # <« —1; it is {(—)}—); O
(b) (dy/dx) is negative when —1 < 2 << 1; it is (4 )(—)Ey
{¢) (dy/dz) is positive when = > 1; it is (4-){-}). . O

There is 4 maximum at 2. = —1 and a mhﬁmum,a.fg QS;::‘= +1,
As control-points we plot e '\\
r=—3, 0, 2 v
y = 2 4 6, $ \\'

\\

o

X

S

L >
.

and obtain the curve as shown. :

S

) (mm :
L
[ =
H3
-

DEDUOTIONS FROM THE GRAPE. The roots of the equation
QO —3x44=0 1y
are, by definition, the values of  for which a®—3x+4-4 is zero,

that is, the values of # for which y is zero. By inspection of

the graph, there is only one real value of « (roughly, —21) for
which ¥ is zero.

t Bee footnote on Example I, p. 51.



&4 : POLYNOMIALS: GRAPHS

In Chapter 111, §1, we saw. that a cubic equation has three
roots: it follows thiat the remaining two roots of the eqnation
(1) are not real numbers, but complex numbers.

Hence the equation (1) has one real and two complex roots.

Again, if & is a number between 2 and 8, the roots of the
equation x®—3z-4+4—~k = 0 are given by those points on the
graph at which ¢ = k. By inspection of the graph, the equation
23 —3x+4-4—Fk == 0 has three real roots.

The line == 2 touches the graph; the equation

23 Ba+4—2 = 0 <N\

Q!

. '\
may be considered to have two equal roots at ¢ = 1 and'dnother
at 2z = —2. In fact, ‘ R

BBt = 2P B b2 NN
__ | =)
so that the fwo equal roots correspond jtp'\xt?ze squared factor.

ExamrrE 3. Sketc\kl the graph of 42 a3—3a2+8x+2.

dx \

The only possible fairhing-point is at 2 =1, y = 3. But -
(w—1)* is positive for}ﬁl real values of « save only « = 1, when
it is zero. Henc’exafy/dx) is positive save at # = 1, when it is
zero. It followg.that y increases as = increases both before the
curve reaqhgs?the point (1, 3) and after the curve leaves that
point. ;1‘{@'9 is no maximum or minimum at x = 1; there is
a Pg{){g OF INFLEXION, the run of the curve being as shown.

SoLuTION, dy = 3(xf— é—H) = 3(@—1)

e

N

. As control-points we plot

sz,y=2;x=2,y=4;x:-—-1,y=_5_
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The curve is then as shown.

4
3
2
/ 1
~
- -rf o2
o
2 N
(NS
% N
N
.\\';
Fig. 9 \
K7
DEDGOTIONS FROM THE GRAPH ; AV

" {1) The equation 23— 3+ 3w+ 24 _~ 0 has only one real root,
given by the point on the gr&ph ’at which ¥ = 0, a value lying
between 0 and —1. AN

{2) The real roots of Jsh’e"equabion ad— 324 3x42—k =0
are given by the pomts\where the graph meets the line y =

For all values of k& 0@1&1‘ than 3 there is only one real root.
The line y = S\touches the graph: it may be considered to
meet it in three coincident points. In . fact, when & =3,
— 3224 32—k reduces to &3 — 322432 —1, which is (x—1)%;
a,nd w i‘ekard the equation (x—1)2 = 0 as havmg three equal
roots *1\ 1.

2\ ’]\F..'XAMPLE 4, ‘Skeich the gmpk of y = a3 3x—2,
SOLUTION. % = 32?243 = J{=¥+1).

Now x2--1 is positive for all real values of x: it is never zero,
Hence y increases with x at all points of the graph.,

In order to sketch such a _curve' with as little actual plotting
as possible, we must find the point at which d2y/da? is zero.
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This gives the point of inflexiont on the curve. In the present

example
ilfy—- = 62:,
drt
~ which is zero when # = 0. The value of dy/dx when = 0is 3;
this gives the slope of the curve at the point of inflexion.
To check the run of the curve on either side of the point of
inflexion we plot the control-points ~
_ r=—1,y= —6, x=1,y=2,
The curve is as shown. -

z/
1 A\
e n_}/’1 X NN
2 O
/__i re N\
15 ”’B:k
_-5 :§..

_ Figa 10

In drawing the curve, ﬁrs,t{‘pl"ot the point of inflexion (0, —2),
then draw sufficient of,.the' curve through this point to mark
the fact that the sloperof the curve at the point is 3, and,
finally, mark in h@cﬁmtrbl—points and fill in the graph. The
dotted line is the tangent at (0, —2); at a point of inflexion
the curve crosses the tangent.

DEDYJTION FROM THE GRaPH, The equation
A 254302k = 0

hgs:bnly oue real root.for all values of k. It is given by the

m;point where the graph meets the line 4 = k. The figure shows
a negative value of %,

5.% A general property of cubic equations

- TueorEM 12, Ewvery cubic equation with real coefficients p, g,

r, & either has one real roof and two complex roots or has three
real roots, '

t This is & result proved by differential caleulus, -
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Let the cubic equation be -
padtgaltrats =0 (p#0).
Then on dividing by p, and making an obvious change of
notation for the coeflicients, the equation may be written as
234 Bazr?-4-30x-tc = 0. (1)
[The factors 3 are brought in because they simplify the resulting

" arithmetic. |
The graph y = 23+ 3aa®+f 3bx+c cuts Ox [y = 0] ab thel®

pomts given by the real roots of (1). ) O
Now dy _”3{2:2_]_2“3:_}_5) . O .
d—.(: - ! ( }c.
d? 0
- and _ d—y = 6(x+a) %)

Also : a2 2qxLb = 0 x\\ (2)

when - (zta) = a’—-by \‘

i.e. v = —a:!:«f(a2—5)

(1) If a® = b, the roots of (2) arereal and distinct. Let them
be « and f, where o << £, Then

d” 3(x &)z~ B). {3)

When x < «, (3} i8 ‘p@ssltwe; when o << z < B, (3) is negative;
when 2 > 8, (3) i positive. There is a maximum at = o and
a minimum af@é= 8. The general shape of the curve is

F1e. 11

If the axis Ox lies above P or below @, it cnts the graph at
one point only; if the axis Oz is at the level of P {or of @) it
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touches the graph at P (or @) and cuts it at one other point;
if the axis Oz lies below P and above ¢ it cuts the graph at
three distinet points. :
Hence the equation (1) has only one real root when Oz lies
above P or below @; in all other cases it has three real roots,
two equal and one other when Oz is at the level of P or @,
and three distinct real roots when Oz falls between the levels
of P and Q.

. '\
(ii) If a® =5, ' \
: % = 3(z+4-a)?, : & \)
d2 AN
E‘i = 6(z+a), ' ~

and the shape of the graph is that of Fig, 9 §4\

If the axis O falls either above or below the point of in-

flexion, it cuts the graph in one point ond§> If Ox is the tangent

* to the graph at the point of inﬂexipn‘,':it may be considered to
meet the curve in three coincident points there. '

(i) If u? < b, the graph hag ho real turning -point. More-
over, by Theorem 11, dy/dads positive for all values of z; and
the general shape of thergraph is that of Fig. 10,§ 4. The axis
O cuts such a graphyitone point only.

Nore-ox THEQR\Eh 12. The result given is a particular casé
of the theorem.that every equation of degree » either has » real
roots or has@u even number of complex roots. We shall prove

" this genggﬁ'ﬁtheomm in Volume II.

&

RN Exameres Va
\m; 1. Sketeh the graphs of _
y=23e+1, Ly =34 %L], oy — a9y 4
2. Sketch the graphs of ' :
Y = 3203z, ¥=3—4dx—22 = y— Blar—az
f The curve s y ~ 304"+ 3u%-1-6; the point of inflexion is (g, c--at),

and the tengent at this point is y = ¢—g3%. This tangent is the axis 02 when

= @* and then the curve is y = {#+2)® so that the values of & for which
¥ 13 zero are given by (z4-aR = 0. :
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3. Sketch the graphs of

() 7 == 20%— 32— 12247, (i) y = —22%F 322+ 122 -1,
{iii) y = T4 12w—a?, (iv) ¥y = 2*—12x—T,
4. 8ketch the graph of y = 22— 9x®+122—5, and find, from your

graph, the values of & for which the equa.tlon 23— 012285 =15k
has two equal roots, :

5. Bketch the graph of y = 4a®—6x*4-3x—1, and show that the
equation 423 —#&x%43x—1 = ¢ has only one real root unless ¢ = —§.

6. ‘Sketch the graph of y = 7T— 123+ 6zt —a*. O
7. _Sketch the graph of y = 32*--12z--9. . p .\‘\
8. Sketch the graph of each of the following: o\

(i) y = a'— 82+ 222 — 242+ 9,
(i) y = 25— B9, ,
(i) y = 35— 16xt+ 4028 — 6022 4521+ 7. N
8. (An example in which the nombers do not *workGud’ to whole numbers

or easy fractions.) Sketch fhe graph of \\.
Yy = JuwS Txt— 6x+5\

6. Numerical approximations to 'the roots of an equation
6.1. If a polynomial changeg{ sxgn between the two values
x = a and & = &, it must be, equal to zero for some value of x
between « and . For exa.mple when
yxw-\fb" 3l dx—3,
the table of values \\ B
= 0, 1, 2, 3,
NS =3 -1, 1, 9,
shows ths;t\u'\ls negative when 2 = 1 and positive when x = 2,
It musb@ zero for some value of = between 1 and 2, since the
graph.of y passes from a point below the axis O, the point-
(L, —-1) ‘to a point above the axis Ow, the point (2,1). Hence
- “she equation 23—38x%+4x--3 =0 has a root lying between
x=1and =2
In order to make a closer estimate of the numerical value of
this root we may proceed in any one of three ways. We may
(i) draw the graph of y on a fairly large scale for values of
% between 1 and 2, and read off the value of x at which.
the graph cuts the wx-axis; -
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(i) test a few values of  between 1 and 2, e.g.
x= 18, 16, 147,
y = —0-375, —0-184, 0-043,
and deduce that the root lies between 1-6 and 1-7, prob-
ably very near the latter since 0-043 is quite small;

(iii) use the method of Suecessive approximations given in
the next section. /

¢
6 2 Newton's method ﬁf approvimation. Let f(x) denote an?

polynomial in #, and lef f'{x) denote its differential coeﬁiment

then Lk;;lfﬂ - f'{a) as k =0, A O

<

It follows that, wben b is small, «z’\i .
| S flathy—fa) =k’ @ '
or  flath) = fla)+-hf (@) (1)

where == means ‘is approximately eqlm to’.
This approximation for f (a—[—h,) is.fundamental in all branches

of mathematics. We shall a.pply it here to the problem of
finding the numerical value of a root of an equation.

Let ¥ = f(x) = ot — 3ud-4w—3,
so that i f {x) = Ja®—6x+|-4.
Our previous t@bble of values (§ 6.1) gives

SNOT z= 0, 1, 9, .3,
7 y=-3 -1 1, 9,

'and %15 shows that ¥ = 0 for a value of » somewhere near
TR 31 (y 18 as much above Oz at 2 = 2 ag it is below Ox at

~ ::3*__ 1 and so crosses Ox somewhere near the point half-way
\ ) between 1 and 2). Suppose the actua,l value is 344, so that

fG+h) = 0.
By (1), FEA(3) =0,
ie. . —&+3h =0,
or b= 32 e .9,

Thus a first approximation o the root is 1-5-40-2 = 17
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6.3. Second appm:cimtz'on. In order to obtain a bhebter
approximation, we merely repeat the process using 1-7 instead
of 1-5. We know there is a root near 1-7; suppose it is 1.7-}-&,
so that fL74k) = 0.

Then, by (1), FUT LR (17 = 0,
and s0, on working out the values of f{1-7) and f'(1-7),
0-043--F(2-47) == 0,

0‘043 2
S e 002, <O

Ny

This givés

so that the root is approximately equal to 1-68. A\

The process can be repeated to give closer and clqsgff approxi-
mations, but the work soon becomes burdensome?}\ '

Nores. (i) The first approximation is somefithes very rough ;
it is not necessarily accurate to the first faee of decimals and
if we are to be at all certain that our ‘Hpproximation has that
degree of accuracy, we must checkiit-by obtaining at least a
rough estimate of the next approgimation. '

{ii) If the values of y at,;:i‘llé 1 and at z = 2, say, have
opposite signs but the former is small in comparison with the
latter, the root lies nean'w =1 and we put « = 14-k to find
the first approximation. _ '

(iii) When using.this method avoid using

AS M
| SO flath) = @)+ (@)
for a valué\of @ which makes f’(«) small: to find 2 we have
to divide by f'(2) and so it is better to have f'(a) large rather
thapgmall. '

.
-
\ BExAMPLES V B

1. Show that each of the eguations
' iy a"—bx+3 =10,
(i) x%}3x2—8 = 0,
(iii) 27 —80x—1 = 0,
has 5 root between # — 1 and # — 2, and cbtain an approximation to
thig Toot correet to one place of decimals.
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9. Show that each of the equations
() 23+Tx—3 =0,
(i) s*—Tr4+3 =10,
, (i) m5—]—4.:;2——1 =0,

has a root between & = (¢ and == 1, and obtain ah apprommatmn to
this root correct to one place of detimals.

3. Find correct to one place of decimals, the toots of the equation

7023 — 81z — 1005+ 96 = 0. p
Hrxr, A tabls of values will show that the roots lic, one betimen
—2 and —1, one between 0 and 1, one between 1 and 2, 5 \\3’
4, Prove that the equation { E,\ )

1
L 3

14t L 2323 — 162223 — 30 == 0 N
has one root between 0 and 1 and one between —3 and.l 2. ‘ Find these

roots, correct to one place of decinals. \
- 6. Show that the only real root of the equah%;
25102415 = o\} o

is approximately equal to —2-04. N

AN

H_INT The only change of sign ocqura,bet,ween —2and —3.



CHAPTER VI \

1

|

PRODUCT OF FACTORS; THE BINOMIAL i
THEOREM '

1. The product (&+a)(z+5b)...(x+k)

1.1. We know, from elementary work on ‘factors’, that I:

(x+a)@t-b) = 22+ (a+bjx+tab. (1N
This elementary result is easily proved by actually multiplying
ont the two factors on the left; some readers will do it* meznta,]ly’, '
others will set out the multiplication sum in full. \ o
When we multiply by a third factor z-+c¢, we get ' :'.

(zto)z+b)ete) = 2%+ (at-b+e)a?+ (5G+m+ab)x+abﬂ (2

This could be proved by setting out in fan JAhe multiplication -~

of (1) by «#+¢. But this is tedious, and\t is not necessary; snd

we get the result another way. o =
We think of  as a variable, axid-we think of g, b, ¢ as.con- '

gtants. To find the product of the three factors on the left of

(2) we want the sum of all theproducts that arise by multiplying

together one term froni“each bracket. [Compare (1), whers

R.H.S. is xz—i—ax—]—b:gdi?rb.]

(i) We may ta,lé\w' from each of the brackets, when the
produet of the Hhroe 2's is a8 -

(i) We mavy take the # from two of the brackets and the
consta t"ﬁ-om the remaining bracket; we can do this in three
differéit’ ways, for we may take the constant either from the
ﬁr&ﬁ second, or third bracket, The three terms we get in this

\"\Yay are gx®, be?, cx.

(iti) We may take the x from one hracket and the constant
from the other two brackets; we can do this in three different
ways. The three terms we get in this way are bez, cax, abz.

(iv) We may take the constant from each bracket, when the
product of the three constants is abe.
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| Thus the sum total of terms obtained on multiplying the
" Hhree factors {z-+a)(z+b)(z-+o) is '

. 23+ (a-+b+0)a?+ (be-+ca+ab)etabe,

hich proves (2).

Noxe. The reader should teach himself, by a thorough understanding
of (1}-(iv} above, to write down (2} withoui any explanatiOQ.

1.2. A partienlar case of (2) is given by taking 6 = ¢ = .
“¥The identity (2} then becomes ~
(1-a)® = 23 3a221 3ax 4@, A N3)
(& result which the reader probably knows already. R N,
1.3. We can repeat the procedure of §§ 1.1 and 12 with four
factors v+-a, 48, a+¢, x-+d, and, on putting.fall" constants
equal to e, obtain ' \\
(z+a)t = vt dazd+ 62zt 448 1-at. (4)
i But already the details are a liftle trodBlesome to write down,
. and when we try it for five or six factons they become extremely
! tiresome. The problem we want to-8olve is ‘What corresponds
i to (3) and (4) when we have ~(;é}Fa)”, where » is any positive
. integer?’ SO
1 In§1.1 it was easy enotigh to ses that in writing down the
- product in (2) there were three terms containing 22, namely,
#%, %, and 2%; Qﬁ. three containing x, namely, zbc, xca, and
xab. Before we can discuss (z-+-a)* we must consider the ques-
tion ‘in how miany ways can we choose # from one, two, three, ...

of the n brackets

OV (+a)(@+-b)(w-Fe)... (x4 k),

angi;t&ke_ the constants from the remaining brackets?’ 'This
Auestion we broach in §§ 2 and 3. '

'_'J

\.
IN/2. Permutations

i 2.1. Suppose we are given 3 letters a, b, ¢. We can write
] * them down in 6 different orders, namely,

abe, ach; bac, bea ; cab, cba. (5)

We examine these orders carefully as a guide to the general

problem when there are r letters to be arranged in order, We
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can choose any one of the 3 letters a, b, ¢ to All the first place:
there are thus 3 ways of filling the first place.

When we have filled the first place, we are left with 2 letters,
of which we may choose either for the second place; thus 2
ways of filling the second place are associated with each way
of filling the first place, and so there are 3X 2 ways of filling
the first two places.

When we have filled the first two places, we are left with »
only 1 letter and it must go in the last place: thus there are
32X 1 ways of filling the three places. D)

In (5) we have written down to begin with the two orders 3
in which ¢ comes first, then the two orders in Whlcli B\cores
first, and then the two orders in which ¢ comes ﬁ.tQtv.

2.2. The factorial notation. The number 3 22X 1 is denoted
by 3!; the number 4X3x2x 1 is denoted- by 4!; and so on.
When = is any positive integer, ~\

n! denotes n(n—1 )(ai “9)...1. {6)
We refer to the s‘ymbol n! as ‘f&ctonal n’, though some people
refer to it (with solemn faces) asy ‘% shriek’.

2.3. THEOREM 13, Thes da‘fferent letters a, b,..., k (say) can
be arranged in r! d@:ﬁ'ergmbrdem.

Proor. We may‘c})(}ose any one of the 7 letters for the first
place in the order, \Having filled the first place in any particular
way, we may chdose any one of the remaining »—1 letters for
the second RIECe thus r—1 different ways of filling the second
place arQ&ssocmted with each of the » ways of filling the first
place.. Hence there are r(r—1) different ways of filling the
ﬁ,ugt two places in the order.

N\ Having filled the first two places in any one particular way,
we can fill the third in r—2 different ways; hence there are
r{r—1){r—2) different ways of filling the first three places.

Continuing thus, we see that there are

2r—1)(r—2)..2.1

different ways of filling the » places, and so we can arrangs the

letters in 7! different orders.
. 4868 ¥
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PermuraTIiONs. We refer to the different orders as the permuta-
trons of the r letlers.

2.4, THEoREM 14. Given » places, numbered 1, 2,..., v, and
7 letters (n = r), there are

n{n—1}...(n—r4-1)
different ways of assigning r of the letters to the r numbered places.

~ Proor. We can fill the first place in » different ways. Hawing
filled the first place in any one particular way, we are left with
n—1 letters and so can fill the second place in n—1 (different
ways. Hence there are n{n— 1} different ways of ﬁllmg the first
two places. {

Having filled the first two places in any Nrtwulam way, we

_ can fill the third in +—2 different ways;goshat we can fill the
first three places in n{n—1}{(n—2} different ways. Continuing
thus, we see that the number of W&}@a filling the » places is

n(n—1)(n—2).,0'r factors,
Now the second factor is n—y, the third is n—2, and the rth
factor is n—{(r—1), ie. n—”?a-i— 1. Hence the number in gues-
tion is ()~ 2)...(n—r+1).

2.5. We sometinies refer to the n(n—1)...(s—r--1) ways of
filling the r nugﬁ{eﬁed places as the ‘number of permutations
of the 7 letteds taken # &t a time’. This number is also denoted
by B Thiis,“ when n > r,

E = n)(n—2). (n— =2
(n ;r)!'
algo. \Theorem 13), B =mnl

- ¢ \’~3:' Combinations
\m ) 2 .3.1. In Theorem 14 we considered the problem ‘Given «
lettexs, in how many different ways can we choose r of them
to A1 #- uumbered places ?” In this problem the arrangement
abed..., wherein @ occupies first place and b oceupies second
place, is couﬁted as distinct from the-arrangement of the ‘same
letters in the order bacd..., wherein & comes first and g comes
second.
We now consider the problem ‘Given » letters in how many
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different ways can we choose r of them, no regard being paid
to the order in which we choose them’. A simple example will
~ serve to illustrate the difference between the two problems.
Suppose we are given 3 letters a, &, c.

FrsT PROBLEM. T'o fill two places numbered 1 and 2. We can
do this in 3% 2 ways; for we can fill place ‘No. 1’ in 3 ways,
using either ¢, b, or ¢ to do so, and having filled place ‘No. I’
in any one of these 3 ways, we can then fill place ‘No. 2’ in ,
2 ways. The 6 ways of filling the 2 places are .

a,b; a,¢; b,a: b e;ea;06b (8)\

Sucoxp proBLEM. T'o choose 2 out of the 3 letiers, H0, 'regard
being paid to the order of choice. We can do this i in & sways; for
we can choose (i) b and ¢, or (ii) ¢ and &, or (111)~f3\a.nd b; and
there is no other way of choosing 2 letters, "

The relation between the two problems 13\3130 eagy to see in
this simple example. ~

In (8) we reckon as distinet the twl) a.rrangements (i} first
and then b, (ii} first 5 and then a® \That is, corresponding to
the one choice ‘e and &’ in thé second problem, there are 2
different arrangements in the. Hrst problem.

Accordingly, the answer "6’ to the first problem is twme the
answer ‘3’ to the seco&d’grohlem

3.2, TreorEM I8, Given n letiers, the number of different ways
in which we can ,gkoose r of them {n > 1), no regard being paid to

the order of ghoice, is
&

§ n{n—1).. (n-r+1) ©)

o !

]?ROOF Suppose that the nuniber of ways in which we can
bhqose r letters out of the n, no regard being paid to order of
choice, is X,. Consider any one selection; it consists of r letters.
These r letters can (Theorem 13} be arranged in r! different
orders. Hence, given » letters, there are X, X (r!} ways in which
we can fill r places, numbered 1, 2,..., r. But (Theorem 14) the
number of ways in which we can do this is

aln—1)..(n— r—l—l}
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Hence rIxX, = n(n—l)...{n—_r-i;l),
and the number X, is given by the formula (9) above.

3.3, ComBiNaTIONs. The number of ways in which r letters
can be selected from n letters, no regard being paid to the order of
chotce, is called the number of combinations of n letters taken r
al @ time.

This number is commonly denoted by ,,0,; an alternative

notation is "(,. By Theorem 15, ' ~
n—1)..(n—r41) n! \
C = n(n : = K 10
o ! -1 4 O110)
Exampris VI 4

. In 1-4 the multiplicatiors should be done men‘t&!:lg;\, the coefficients
of the various powers of = being obtained by.the’ method explained
in§ LI O

2, N

1. Prove that L&
: {(x—a)(z—b) = x’——(q’-‘l?b}m—l—ab,
(2—a)(@—b)(z—c) = &*—(a+bLoW? 1 (be -+ ca-} ablr— abe,
2. Prove that PR :
(@+1)(z4-2)(z L 8h= 2®+ 6224 11zt 8,
(T— 1)@—2)(#=3) = 23— 621+ 112 —6.
3. Prove that L
@+ 1@< 22 +-3) = 234 2005w,
\\{iﬁ”— 1{z+5) = 224 5z x5,
425 1@ 2) {2+ 3) = a4+ 6,
4. Prove that; _ [
RS (:t:”-—l)(xs—“a}(:q?—}-:i} = @9 Ta?1 §,
AGEA-b){az 1 2b){az+ 3b) = o'+ 603 1- 11abis+ 6b%,

O
R ,j5.:".1n how many ways can one -
o \ (i) piek 3 teams from a Tist of 10 teams ?

(i} pick 1 team for first Place, 1 for second place, and 1 for third
place, from a list of 10 teams '

6. A group of 22 peopls is to be divided into two groups of 11 each.
In how many different ways can it be:done ¥

Hivr, The problem is that of cl}ot\ising--\one group of I1; for when

the first group is chosen, the other gToup must consist of those left out
of the first group.
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7. In how many different ways can

(i} 1 boy and 1 girl be chosen from a group of 6 boys aad 9 girls ?

(i} 2 boys and 2 girls be chosen from a group of 6 boys and @ girls ?

Hixt. With each way of choosing the hoy(s) we can associate each
way of choosing the gitl{s): the answer to (i) is, accordingly, 68X 9.

8. In how many ways can we choose

(i) 7 letters out of 10 letters, {7i) 4 letters out of 6 letters,

(iil) 8 letters out of 8 letters, {iv) 3 letj;ers out of 8 letters, ~

no regard being paid to the order of choice?

9. In how many ways can we arrange in order 7 footba]l teémﬁ
4 letters; 5 examination candidates? \

10. We are given 10 letters and 7 numbered places; ]n hbw many
different ways can we 61l the numbered places? '\'\

I1. There aro 7 vacancies, one in each of 7 different counties; there
are 10 candidates in all. In how many ways can,we fill the vacancies?

Hiwr. Number the .counties and usa Exam&la\lo'.

12. A group of 14 people is to be dw;ded ‘into one group of 7 and
one group of 3; in how many ways can it be done?

Hixz, In Bxamples 10, 11 the ordep of' choice is relevant; in Example
12 we have to select 7 people, no rega.rd being paid te the order in which
they are selected. 3

A

N
ne
13. Work out the nﬂQ\ei‘ical velues of
N 5Py #F5 Cp 0
14. Prove thazt},(" > JGyifn > T

SOLUTION”\ Ny
Y n{n—1¥}nrn—2)(rn—3 n—39
QA G ‘(—%‘“) = Xl

Lat % > T; then n—3 > 4, and 0 is equal te ,0; mulsiplied by
a‘fa(?tor that iz greater than unity. Hence /0, > (5.
\ 15. Prove that (i) O > o5 ifm > 11,
(i) 0 < Ciifn <11,
(i) O > o0y if n+1 > 2r.

16. Verify that .
erity v (i) 440, = Cis

(i) ¢C5+6Ce = +Cs.
(iil) ¢Cs+2 a0+l = 1006
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4. The binomial theorem

4.1. TaroREM 16, When n ts a ‘positive tnfeger, (x-+a)* is
identically equal to

- O amtat . 4 G tar+ . fan.
Proor. Consider the product '
{x+a)(x+a)...(x+a) [» brackets].
It is (compare § 1) the sum of ail the products we can obtain
~ by multiplying together one term from each bracket. Further

(i) we may take z from each of the brackets W}‘men the
product of the n z’s is x*;

(i) we may take @ from one bracket and an, ?c from each of
the remaining brackets, and we can. d&‘thls in n ways;
there are n products an-1u;

(i) when r is an integer less than :mbvi'e can gelect ¢ out of
the n brackets in ,C, ways, aﬁd if, having chosen our r
brackets, we take a out of ‘eaich of them and take @ out
of the n—r brackets we) \have not chosen, the product
is 2"~"a", so that there ware ,,C, products a*~"a’;

{(iv) we may take a ﬁ:om each of the x brackets, when the
product is a®. L :

- .Thus the sum ofiaﬁ“ the terms we get on multiplying out the
# brackets is N
o g Clx” ot .. +ﬂ0 ar gt e, {11)
and this ; ,Rroves the theorem.
{Nétes on Theorem 16.

N(}m 1. If we think of (a42)", instead of (z-+a)", the result

we “have proved in {11} above shows that
™ {a+z)? = ar+,C 0"+ +,,0,aﬂ~rxf+...+xn. (12)

But (a+2z)" = (v4a)%, and so (11) and {12) are identically
equal: in (11} the coefficient of ate™— ist (. _, and in (12) it
8,0, 80 that O = .C. (13)
This means that, in (11), coefficient of z"la — coefficient of

za™% coefficient, of }:““%&2 = goefficient of :cga“' ¢, and so on.
1 Notice that, in {11), t.he

N

uffix after ¢ and the power of x add up to .
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The important result (13) is also obvious from the expressions
for the two symbols given in {10). By (10),

n{n—1).. fr41) _ al

'}tc‘ﬂ,—f = (n_'?)T (n ?’)T ?‘]
and o _n{n—1).(n—r41) _ 7l
T r! T orln—r}l’

Note 2. The coefficients
nin—1) 0= nin—1).. (n r1)

1, Oi=mn 0= gy WG = Lo
: O

are often referred to as THE BINOMIAL COEFFICIENTS. O™

Note 3. The name ‘binomial’ is a survival of thp:tifkl tech-
nical term; z-+¥ is a ‘binomial’, z-+y-+z is a ‘tringmial’, while
x-+y-+...+A, where there are more than three Jletters, is a
“multinomial’, : N '

Note 4. Sometimes it is more convememrto use the notation
of Theorem 16 and to write o\

(x4a) = a"+,Cla"lat ., »r]—,nC x“*’a"+ Aar,
and sometimes it is more convement to put in the values of
the binomial coefficients &nd Lo write

(1)

(@tay = an+natn T ety

\
n(n_w)x“—fa’—l—...-{-aﬂ. (14)
NortE &. i"“?ie general term. The expression (11), or its equi-
valent, (‘}\}), 1z called the expansion of (z-+a)* in descending
powers\'of x; the expression (12} is called the expansion of
(m—i;a;)"' in sscending powers of z.

\The expression

ZOhar e’ or n(ﬂml)""’(ln“r"‘_l}x“*’af
is called the general term of the expansion, to distinguish it '

from the particular terms, z®, na®-'e, and so0 on.

4.3. Numerical examples of Theorem 16. In using the bino-
mial theorem to expand expressions like (14-2)7 or (24-x)8, we
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avoid needless labour if we apply the result of (13). For
example,
7.6 7.6.5

L=1, 702—-§-—21 7(1‘3-_W—35
and so the expansion of (14)” begins
4T+ 21x2 4+ 3523 ..
But, by (13), the coefficient of 2* = the coefficient of x3,
T » o =, 34 » X N\
LR b 2 xs = 1 " b x’ N
and the coefficient of 27 is 1. Hence R ~

(14%)7 = 14-Tx-+-212%4 35% 1 3524 21x5—|—7:1:3+w”
BuLe. When the index n is odd, caleulate nQ as far as
T = §(n—1), and then use the result of (13). "‘\
Again, to expand (2-x)%, we calculate RN
6.5

&1L =6, 902—7_15 s&—

The expansion of (2-+=2)° begins

—4320_

2646.2.2-115. 24 m2+20 28 a8 4...
From (13) the coefficient of: 2%4 = the coefficient of 242,
) e Y .[;, 25 = . ) 25x’
and the coefficient o{‘:;b’is 1. Hence '
{24-z)f = 204 622524-15.2%>2-1-20. 23x3+ 15,2291 6, 20542
= 64;% 3022240224 160x_3—}- 60x2-- 12x5 ok,
RuLe. W%n the index n is even, caleulate ,C, as far asr = in,
and t@@@s& the result of (13). -

5. Particular examples of the binomial theorem
. \M‘; 5.1. (z4-a)® = x3+3x2a—{—3m2—}—a3,. (15)
U (aa)t =t dadat 6a%a? - 4w tad, (18)
ea)s = 0+ Seta-102%2+ 100203 Bratd-at. (1)
It will be otlced that in (15) and (17), which correspond to
" 0dd valyeg o’f . the\numerical coefficients increase and then
~ decreage, there being Hywo equal coefficients in the middle; in
('16)‘ thh correspondg\ to an even value of z, the numerical
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coefficients increase to a largest term in the middle and then
decrease.
We shall return later to the general theorem on this point.

5.2. Numerical approximations. The binomial expansion can
be used to find the value of expressions such as {1-002)!%, (1-01)7
to any desired number of significant figures.

ExaMpLr. Find the value of (1-01)° to 4 signaficant ﬁgures

SoLUTION.
(1-01)5 = (1--10-2)% Oy
— 145.1072--10.10~44-10.10-5+45.10-54- 1673,
Write the values down column-wise, stopping as goon as it
becomes clear that further entries in the colquswould not
affect the first four figures of the answer.
13 =1 a\J
5.10-2 = 0-05 \\
10.10-* = 0-00I\\
10.10-6 = (00001 |
Add 3051 (to 4 significant figs.)

The two terms we have laft’ gut' 5.10-% and 10-%, have no
effect unless we want thp\&nswer to 7 places of decimals.

5.3, The expa'ﬂsw%\}f (a:—a}“

nl)

(z—a)" =, ‘"*-Jr-nx“ Y —g) 4 D2 gnt_gyeq .+
\:\ _;_n(n—l)..;gn ?+1)x”*"(—a)’—i—...—i—(-—a}”
M\:..\:;:' — gl Ja+n(n 1) Jr s I
AV n(n—1) (n—r+1) :
+(“1)r TI xn—rar__k_'_._}_(__,_l)nan’

and it is in the latter form _.that one is accustomed to use the
expansion. For example,
(@—b)® = a5—5a% + 10a5h*— 10a%b?- 5ab—b®

5.4. In this section we work out one or two problems that
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are typical of the more elementary applications of the binomial
theorem.

1 ) .
ProerLEM 1. Fepand (a:—{—%) in descending powers of x.

SoLuTIOoN,
1\¢ 1 1. 1 1 1 1
(x-|—5) =x3+6x5.5+15x4.:1—§-[—20x3.;6—3+I5.r2.x—4—|.—6a:.ﬁ—|—g
= 284 62415224 20+ 1522+ 6 -2 426, ~

The same work gives, on a rearrangement of the terms, O\ '
(x+1) (xﬁ+ )+6(x4+ )+15( 0. 1 )+20
which is a type of result that is often useful in the bngonometry

associated with de Moivre’s theorem. O

ProeuEM 2. Find the expansion of x\\

(24232273 :
in asceﬂdmg powers of z, calculatmg the coefficients as far as
that of z*. . R\

SOLUTIONT (24-2— 3:1:3),7 = {2+m(1 — 3z}, (1)
The coefficients in the expansmn of {a+b)? are
7.6 03 7.6.5 7.6.5.4

i

L EN M 55 =3 g =8
and so (1) iz equal to
2747 gﬂw(l 3a)4-21.25%(1— 82)2 435, 2%°(1 — 3o+
\“\, +35.284(1 —3x)tt-.... (2).
We m%v expand (1—3xz)2, (1—32)3, (1—3x)* but omit all terms
th@t lead to powers of x above the fourth, We get
\ )T 2T 2% —3a%) 21, 252(1— 62} 92%)+
+35. 2%3(1 —9x-+...)+35. 2%41—...)
= 2164 56(x— 32?) - 84a%(1 — B+ )4
+7003(1— 9%+ ...) 485241 —...)]
= 2[164-560— 842 — 4343+ 1618 -.. Je

t Asthe reader becomes more\fa,mﬁmx with this type of sum he will probably
teach himself to leave out many\of the intermbdiate steps here given.

. I\-.
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5.5. Approxvimations. Consider any particular polynomial in
%, B8y flx) = 344z — 5w 63— 9t (D)
When z is small, the value of 2% is smaller, and the values of
2% and x* smaller still. The expression 344z differs from f(z)
by a¥—5-6z—9x?), which is small compared with z. Thus
344« is an approximation to the actual value of f(z) when x
is small. .

Similarly, 34-42—5«? is an approximation to the actual value
of f{z} when x is small; it differs from flx} by x8(6—9z), Whlsh
is small compared with 2.

We speak of 3+4x as an approximation corrveet to, te:ms in
z, of 3+4x—52% as an approximation correct to j:e\rms in 2%
and so on, O

NorarroNn. We use the symbol == to de{mte is approxi-
mately equal to’. R O

ProBLEM, Obiain the appmmmatww correct to terms in 2 of
(1—x-325), o\

Sorvution. Neglecting all termsnf degrees above the second,
we have (1, gusy0 = ( 1‘--‘-x)7 o 1 — T4 21a?,
the last step being derived from the binomial theorem.

6. The product of twe polynomials
6.1. 1t is often, necessa,ry to-write down some {or all} of the
terms that arisé'When two polynomials are multiplied together.
For examplq,‘}o multiply
Q %81 Saxl-3afr+af by xi— 5bm3+b4 4
we Wﬂte down
-: {3 3aa? 1 3a2y-+a?) (@t — 5bad+-bY) (1)
= #7+2%(3a— 5b) +25(3a2— 16ab)+xH{a®— 1 5a*h) |-
4 a3(b*— 5?h) + 3abie?+ 3uPbir+atdh.
The manner of writing down this last expression is best ex-
plained by examining the coefficient of a particular power of
z, say of a5 We get an 28
{i) when we multiply the z* of the first bracket of (1) by
the —5bz3 of the second bracket,
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(ii) when we multiply the 3222 of the first bracket of (1) by
the #? of the second bracket;
and no other 2% oceurs in the multiplication. Therefore the
coefficient of % in the product is —Bb- 3a.

Sometimes all we want is the coefficient of a particular power
of ¢ and then, of course, we do not write down all the terms,
but only the one we want. For example, the coefficient of z3
in the product of N\

(2®+8x24-3x+ 1) (2! — 428 Ba2—da4-1)

is seen to be 1—3.44-3.6—4, ie. 3, for we get an x(;n\the
product in the four ways ~\
231, e x 62, AN ’
o (—4x), 1 (4@
6.2. The following type of problem servestd pI‘OVldB practzce
in manipulation of this sort, \\ :

K
ProBLEM. Find the values of a a}nd b in order that, when
{xtaPa—>0)8 is expanded in ;pqwé?'s of x, the coefficient of x®
shall be zero and the coeﬁiczeﬂt qf o shall be —9,

SOLUTION. :
(Z+a)P(x—b) = (a:s—]-{‘%&xz—i—3a2x—|—a3)(m6 6bat - 155624 —...).

[Note. Wo want only ¢Vand 27, so that there is no point in continuing

the second bra{kﬁ beyond z4; any further term cannot Jead to &7
or z% in the 'product 1

This is equalMo’
o 85 23(30—6b) +7 (32— 18ab 4- 1552 ...
N We m@t"therefore choose @ and & so that
36—6b =0,  30®—18ab-L15b? == 9,
\”‘The equations give ¢ = 2, and ——%2 —9. Hence the

(342205, (wt 1)5, (2:1:—} 13,
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2. Find the expansions in descending powers of x of
(x4 1), (w423, (2z+3)3 (142
3. Find the coefficient of &7 in the expansions of
(2+4a), (224 )%, {z+1).
4. Find the coefficient of #? in the expansions of
{10, (1+2x)7, (24-2)%

5. Expross () (1220 ¥,

() (1+=z)*—(14=¥,

as polynomials in =.
6. Find the cosfficient of x* in the expansion of AN
(i) (I+a)—2(1+a=), O
{ii) (1422 —(2+2). ~\

Eramples on § 5, 6 . ,"‘..\\'

7. Calculatoe to 4 significant figures (1-02)7 and [Adrder] (1-11)0.

8, Caleulate to 5 significant figures AN

(1-002)E, (1-021}3’.‘3\
9. Calculate to 4 significent figures S
(0985, _(0:992)%

10, Expand (z+z 1) in desceﬁjﬂﬁﬁg poweres of #; determine the
coeffcients of 2 and ! in the &xpansion of (x4 1) (x—z™1).

11l. Expand (e-be1} andﬁ(:c—l—x‘l)‘(:cz—f—:i—f—:v—ﬂ} in descending powers
of z. ) <’

12. Express (2+x232")® as a polynomial in x, and (karder) find the
coefficients of z* axzd, #1¢ in the expansion of (2++z— 3a%)7,

13. (Harder;z)\:ﬁbta,m the expansion of {3x4-14 3271} in the form
Byt o) o) Fan(a o) (s ) g

14. Eiﬁ&\bwhe terme independent of  in the expansion of
,\.f';" {2+ 1) 14 2217,
“157 Obtain the approximations correct’ to terms in &%, when z is
stagll, of -

(1—22—32%,  (1+4w—3%F5,  (3+x—=)p
16. Find the coefficients of #!! and '? in the expansion of
{x+a8{e-—h)E. _

17. Find ths numerical value of a which is such that the coefficients
of 7 and #% in the expansion of (z+a}f{x— 2a)® are equal and different
from zero,
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Examples on ‘the general terom’
18. Find the gener&l term in the expansion of {3— 23:}
SorLorioN. The term in =" 1s

-1L.(n—r+1
0,87 (— 2wy = (-1 M ]3""2’““"
19. Find the goneral terms in the expansions of
(4 1-3z)", (5—2x)", (a-+2b)™
20. Find the general terms in the expansions of
Hn 3y _ »
(2243)" (2243)" A
N ¢
7.% The binomial coefficients . N\

7.1. The greatest coefficient. We here answer the questlon
‘which coefficient, or coefficients, in the expansmu* "‘:

(0" == Lt oty oo gl (1)
is the greatest?” As we have seen,
o n! . ANV,
R ()l P {n\—r—l)l (*a"—f—l)l
Henco wConn _ (=) ) _ T )

2O, m—r—D-D T 17
1t follows from (2} that ,:{;': >
(@) when #-~1 > 7 1e ie’ when r << 3(n—1), Oz = 00
{b) when n—r = fr—’p} i.e. when "= $n—1), Oy = .0
(¢) when n—r. &4_1 ie. when r > }(n—1), 0,y < ,C.

If n is oddys *r == }(n—1)—1 is the greabest value of » to
satisfy (a}, a:nti 80

/1= 01 < .= O;(n Doy Ci-(ﬂ e
from (’b}

an,d,. from (c),

noﬁn—l) - O}(n-t-l)’
2Osnsn > 2Cynra > - > 305
\The two middle terms of (1) are equal greatesi’.

- Ifnigeven, r = in—1 is the greatest value of r to satlsfy (a}
no value of r satisfies (b), and so

from (a}: 1< nOI << 'n,oin—l < noim;
from (e}, 'n.G&‘-"a > ncha,ﬂi—! = nO}n+2 P nOﬂ,'
The middle term of {1) is greatest.
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7.2. The same method may be applied to the solution of
problems of which the following are typical; the second problem
is easier than the first, which may be omitted on a first reading,

ProBLEM 1.* Find the numerically greatest coefficient, or coeffi-
cients, in the expansion of (14 3x)™.

SonuTioN. Let the expansion be 14-a, 2+...4-a,a7....

Then
nl 7!

= : — 3" ———— N
Graa = 3 (n r—D (1) br (n— :r)'lrf )
N\
and G 3{n—r) _ O
@, r+1 7 O
- It follows that m\\ '

(@) when 3n—3r > r41, ie. when r < 3{3n V), Gy > a,;
() when 3n—3%r = r41, i.e. when r = ;(’%ml), g = Oy}
(c) when 3n—3r < r+1, ie. when }»}(Sn—l), Bpyq < Cpe
There is an integer value of r sa,tlsfymg (6) only when-3n—1
“is o multiple of 4. If 3n—1= 4k, Where & iz an integer,
1<y < e << a,,@_l < a, from (a),
B = ’d':k+1’ from (b),
and Gpyq >0 ,:2‘> > @,  from (c).
The coefficients of x!‘\:ld z*+1 are equal greatest.
When 3n— 1., pot a multiple of 4, denotet by [$(3r—1)]
the largest m‘eager less than }(3n—1). Then, from (a),
\ 1< g << e < Oggian—13 < Giiian—1i1,

and, from (¢), the coefficients that follow are less than gy g,

»'.I‘he greatest coefficient is a5, where K is the integer next
afbo%fe 1(3n—1). For example, if n =13, }(8n—1) = 4 and
K =10,

ProBuem 2. Find the numerically greatest coefficient in tke
expansion of (15w,

+ The notation- [#], for the largest integsr that is less than or equal to n:,
is commonly used in many branches of mathematics.
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. Soruron. Let the expansion be 14-a,24..4a.2"4....
Then

131 13!
— K+l 7" "_-:5"—.,
R R Ty oy Y Al s ey e
Gy 5(13—1)
and __tﬂ=__.—.'_‘
@, r+1

It follows that

{2} when 65— 5 > r+1, l.e. when 6r < 64, a,,, > a,;
(6) when 65—5r = r+1, ie. when 6r == 64, i1 = Gy},
(¢) when 65—5r < 741, i.e. when 6r > 64, a,,; < a,:.“
Now (@) holds when » = 0, 1,..., 10, \
and  {(c) holds when » =11, 12, 13. <"’s

T<a <ay <. <“1o<0)1
and @y > @5 > @y,
Hence the greatest coefficient is , A
"'11 13 \ 11
ay = 51, 2‘11” 365
7.3. Identities connecting bmomml coefficients. A mumber of
identities can be obtamed ‘by giving « special values in the
results .
(o) = 1+nx+,55=x2+ A aCo ot (1)
(=)t = 1k, G (1), G (— 1an, (2)
and, of cour'sg, In other expansions of a like nature. The results
of putting’= 1 in (1) and (2) are
N O 14,0+ Ot v, 0, = 2n, (3)
A\ 1— 0Oy — (=12, = 0, (4)
beth useful results. _
) Another famous identity, often called  Vandermonde's
theorem, ¢ s from the simple consideration that
A\ (1+x}m+" (I—I—a:)’"*x(l—i-x)ﬂ
First, let r Epe & gwen number less than m. Then
{1—]—§)m =1+,0a0+..+,.0 e o (8)
Also, whether r 1s\less than, equa} to, or greater than n,
14z = l—-“r Gat+,02%+ .. to (r4-1) terms.- (6)

\,,.
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.When we multiply (5) by .(6} the total coefficient of 2% in the
product is the sum of

coeff. of ¥ in {5) < coeff. of 2% in (6},
. & tin{B)x ,, & in(6),
. aZin {5)x -,,  2*in(6),
and §0 on; the sum continuing until we get
coeff. of 2 in (5) X coeff. of 2™ in (6)

when r <{ n, and the sum continuing until we get

O\

coeff. of z— in (5) X coeff. of z® in () O

when » = n. The coefficient of ™ in the product 'e_{ (5) and
(6) is thus r+m r—1- ﬂ01+mor—2'n02+"': ~..,j\§ ' (7)

the sum continuing for 1 terms when 7 <% and for n-+1
terms when ¥ > n. \.

But the coefficient of a7 in (1 z)™"js. }MO, which iz there-
fore equal to (7). O

7.4. Vandermonde's theorem {contmmd) We can write (7) in

a more convenient form, one better adapted for dealing with

values of r greater than m or n, if we introduce the symbol

2O, Where & may have aﬁy value 0, +1, +2,..., and agree that

»Co =1, while ., sh@]l denote zero whenever ?c is negative or-

is a positive number greater than n. We may then write the
result proved m§ 7.3 as

m-\i-'ﬂ\g m nOlJ—i"m r—1" n0+ +m00 -2 (7 a‘)_
there bmhg’r—]— 1 terms on the R.H.S.; when r = n, some of the
end mefﬁclents will be zero. The formula {(7a) is known as
V.&NDERMONDE S THEOREM.

\Wlth the above conventions concerning the meaning of the
symbols, {7 a) remains true when 7 > m.

The particular value n = 1 gives
(i). el = r+m -1 (6o =1, G =1 10y = 0),
while the parmcula,r value n = 2 gives

(ii) mq.g +2 OJ" 1+m -2

4765 a
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On the other hand, these last two identities are best derived
by an independent consideration of the coefficient of " in

(i) (12t and in (1-+2)(1+2)7,

(ii) (14-x)™+2 andin (1 2x+a?}142)™
In fact, any partioular case of the theorem is best dealt with
by going back to the simple fact on which the theorem rests,

namely, the coefficient of 2 is the same in (1-4-x)™.(1 +x)" as
it is in (14a)ymtn, O

7.5. Further identities. A vast number of other idé,ﬁti}sies,
few of them having an importance comparable with those
already considered, may be derived by various spﬁeelail devwes
We shall work out four typical examples. '..\\‘

ProeLEM 1. Prove that

N
C 01--1 nol_!_ﬂ r—2- nos \tb (?‘-l—]} terms
18 equol fo 0 when r is odd and 45, eg‘ual to (—1)¥,C,, when r

5 even. o\

Sovrvrron. The form of thé éxjgression suggests the coefficient
of 2 in the product of theltwo expansions -
(1—z)" —‘1—m+ A=) G
(k+ )Q‘z 1+nz+ .t CraT -
The coeﬂiclqnt; of o in their product is
“l)r[nGr Or—l ﬂol+ﬂ r—2* ﬂoﬁ ]
and mus{;\be equal to the coefficient of #* in the expansion of
(1-—3){2" But the latter coefficient is zero when r is.odd and
' is (i\)*" C,, when 7 is even. This gives the result required.

PB.OBLEM 2. Prove that

o) L4 (PO 10 (1) terms
ig equal fo ,, 0.
SoLuTiON. :
() = 14nat... 40,27 -2m, (1)

:t Most readers, though not afl, will probably be well advised if they omit .
this section and Examples VI ¢ on a first reading. The section will probahly
suit the taste of a ‘mathematical specialist’. '
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Also,
(1-a)n = xn<1+m—1)ﬂ—xﬂ{1+m—l+ A Gr T b (2)
Hence, on multiplying (1) by (2),
PnP o+ GG+
iz the coeflicient of z* in the expansion of (1-+x)" < (1-+a)",
i.e. in the expansion of {1+)%*; and this coefficient is ,, 0.
ProsrEM 3. Prove that
142,043 w Oyt oot 7 nCpn +(n4-1) = (n2)27-L
Sorurion. Consider - : SO\
S(x) = 14-2,0, 243, G2+ - (n+-1)2"
The Torm of the right-hand side shows that the multlphers
1, 2, 3,..., n+1 of the binomial coefficients WJlI dlsa.ppear on
integration. This suggests the next step. )
f Sz} doe = 2+ ,0 2%+, 0, xs—i—...—i—::gi\“ﬂ—{—const.
= x(1+x)“+const x\ “
S@) = - o+, (O

ie. S(z) = (1 —I—x)”-{-nx(l -i—x)“—l
The required result fo]lows onputting x == 1.
PROBLEM 4. Prove tkat\

1+ +1ﬂ’£11&_ ton+ltee'ms—~—(2“+1 1).

SoLuTION. Led:x -
o 12 1n{n—1) s n
S(g{) x—{— na: + 50 234, —i—n+1x +1,
The, *f\'m of the right-hand side shows that the multipliers
1, 'q}, ... of the binomial coefficients will disappear on dif-
\{:Ve‘g'eﬁtiation. This indicates the next step; differentiate S(z).
e get

@) = 1bnot M0 Mony o
L e (l_l_x)n.
o Sy = .[ (14+-2)7 de = (1—[—7:?:}’“'1_'_‘4’

n4+1

where 4 is a constant.
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But §{x) = 0 when z = 0, so that A = —1/(n+1). Hence
(14z)r+r—1
. n-H1

and the required result follows on putting 2 =1,

S(g) =

J

Exampres VI ¢*
1. Find the numerical value of the greatest coefficient in the expen-
sion of (i) (14=)8, (i) (1+x)0, _ Q)

2. Prove that in the expansion of (1-+z)! the coefficients of :p* and
of 2% are equal and are greater than any other coefficient. 2N\ "~
Hrnz. Use the method but do not quote the result of § 7 1
3. Prove that if (2432 = eyta, 24 ... fa, a7, then~
Tryy 21 —3r 'M'\\
@, 242 ’
and dedice that g, < a; < ... < a; 8, > a, 28> .

4. Prove that in the expansion of (5+ﬁix)1‘- the coefficient of x% is
greater than any other coefficient. AN

§. Find the value of the grea.test i;érm in the expansion of (1-+ 3z)7
“when @ = }.

v.,

8. (Harder.) Find the V&luefdf r for which the coefficients of a#—9
“ v 19
and %% in the expa.nsioriof (2x’+§) are equal,

Hiwr., First writed @m: the general term; Ex, 20, VI e,

7. (Harder.} Prove that in the expansion of (1-4—23;)3”'.Fz the coeffi-

clents of x##il a‘nd of #22 gro equal and are - greater than the other
coefficients in Ehe expansion.

8. Promﬁhat ' 14+ .0+ wCi e

wheresthie last term is 0, (=1) if n is even and is ,0,_, (= n) if n is
odd, is‘equal to 281

9 Obtain identities by considering the coefficient of o in the expan-

\ gion of each side of the identities

(1+a)*H = (L+a)(1+ Bz + 3u2 - ah),
{142)"H = (1+2)™(1 + dv+ 622+ 4o 4 24).

10. Find the coefficient of ¥ in the expansions of {14-x)}§(1 —g?®
and of (1—z)*1-+|-x)**+, and hence obtain the identity

(—-‘1)?(“0 & Cr—l"T'nCr 2]
= Cn !H--i.Ozr"‘ 01 n—pdcm—-l [ +9l02r ﬂ+400
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11. (Harder) Obtain an identity by considering the coefﬁelent of
xfr.in the expansion of each side of the identity

{1+2{1—x2)® = (1 —a)¥1 L5,
NOTE oN Exx. 12-20. The answers, given at the end of the book,
show one method of obtaining each result.
12. Prove that
mOr - m+!.00 Tl m-{-‘J.Cl +.e +( ~1 )r anD -m-|-10r
{—1)¥ ,.C;,, when 7 is cven, A
(— 1)+ Gy, when r is odd.

13. Prove that AN
‘.rtOO‘ ﬂCle_ﬂCl ‘ﬁCT+1+'" +ﬂ0ﬂ-—-‘f N ﬂCﬂ = 2“0131—?" 2 :;“\l
14. Prove that KON
menCn 1Ot amyaCmir - 201+ o FmpaCingn - nCn = st 2
15. Prove that AS
m—}—ﬂoo “(1 "‘f‘mncl n01+ +m+ﬂcﬂ ﬂcni"ﬂnmcﬂ'

16. Prove that ' \ &

94 8,0 wob 4 0@t b ook (1 2)y O 0?2 L]}—i—x}““1{2+(n+2}m}
17. {Harder.) Prove that A\ d

124-22 O'I:z;—l—32 #Cox?4., —'—(?i—]—l) 'v” = —-{x(1+x}"+nx2(l+x A=y,
18. Deduee from Example 17 ﬁmt _
12422 ,.0 4 82 0+ ol + 12,0, = 292(n?-+ bnt-4).
19. (Harder.) Prove that )
1.242.3 GiT\\r(n+1)(n-| 2),C, — 2 nt 1 TnL8).
20. Prove that,, 1f
'n('n 1) x‘

‘a
F(x) ‘x—\u— —l—-n— -+ —1— o to n+ 1 termns,

then \w F”{x) = (1 —I—w)“
Dedqe} that
e M 1 n{n—1)

... to n+1 terms
= (2" —n—3){(n+ 1)(n+2)}.

\'\ SR S e ST




_ CHAPTER VII
POLYNOMIALS IN MORE THAN ONE VARIABLE

1. Homogeneous polynomials
1.1. In the polynomial
38+ 4x2y 3xy T3
ea.ch separate term is of total degree 3 in x and y; each sepatate
ternt. is of the form e, z7y* ", where a, is a constant. Such a
polynomial is said to be homogeneous and of degree 3 ind Zand y.

Similarly, a polynorial in three variables 2, y, z, whlch is the

sum of terms like @, Y, N

wherein a,, denotes a constant, ig said to be: h\tnogeneous and
of degree » in z, ¥, #; each term is of to@l degree n in z, ¥, 2.
For example, 3t Ty —5xyz?'4§ Lot

is homogeneous and of degree 4 m 3); Y 2.

1.2, Turorem 17. If f(z, y,z) ts homogeneous and of degree n
cimE, Yy, z,and kis g constan; then

f(ka,:z“ky! TCZ) = knf(xi Y, Z).

Proor. By h {iﬁ}:i\eais, fix,4,2) is the sum of a number of
terms like a mryszn—r—s (1)

In order to &bta,m the value of fkw, ky, kz) we write kx for =,
" ky for yoand ke for z in the expression for flz,y,2). Thus
f(k:v, h(}z) is the sum of a number of terms Eke

R\ @Ry (kyy P Roz)—-s,:
1% &, xryszn—r-s ke, (2)

\ ) Thus each term (2} is k™ times the corresponding term (1) and

8o flkx, ky, kz) is k» times f(z,y,2).

CoroLLsrY. The theorem is true, not only for three variables
x, ¥, z, but for any number of variables.

For example, if f(x,y) is homogeneous and of degree 6 in

and y. Sk, ky) = kbf(a, ¥)
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and if f(x,y,21) is homogeneous and of degrée 7inx, ¥, 2, ,
2z, 2y, 22, 20} = 2%f(x, y,2,1). _
Examples VII, 2 (i)—(iif} will provide practice in applications
of the theorem.

2. Symmetrical functions ; > -notation :

DerINITION. A function of two or more variables is said to be,
SYMMETRICAL in these variables when its value is unaltered by
the interchange of any two of the variables. K 3

For example, \ O

- r+ytz,  yrtartay R

are symmetrical in &z, y, z; but 2+y-+22 is not §5'Qiqi:netrical in
x, ¥, 2, since it is altered by the interchangeol'y and z, which
changes it to x--z+2y. AL

In dealing with such funetions the.’\’zl‘\notation is useful,
Suppose we are dealing with three wariables a, b, ¢; we use
> a to denote the sum of all terms of which a is a type, that is,

Sa denotes a-{-b—}—c,
similarly, © X be den@i;ps bc—{—m—l—ab,
and ¥ be(b+c) denot@"bc(b+c)+m(c+a)+ab(a+b).

3. Alternatmg fulktlons and cyclic expressions

3.1. DEFINTI‘{ON A function of two or more variables 18 said
to be an ALTBRNATING FUNCTION when the interchange of any two
of the m{"‘bles multiplies the value of the function by —1,

Fory éxample b—c is an alternating funetion of & and ¢; and
(b—c)(c—a)(a—-b) is an alternating function of a, b, ¢. _

_“We shall not go into detail concerning these functions; we
note the property of alternating functions and eall attention to
the fact that it iz nof the same as the property of symmetrical
functions. When two variables are interchanged, an alternating
function is changed in sign but not in magnitude, while & sym-
metrical function is changed neither in sign nor in magnitude. K

3.2. Cyelic expressions. We now consider another property
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connected with a change of variables. We begin with the

particular example '
By—2)hyhe—a) Fta—y).

Write %, ¥, z in order round the circumference of a circle and

mark in the arrows, as shown, :

X
/7
\ '\
O\
Z H NN “
Fia. 12 ."’:,\\

First write down a*y—z). This begins mith «? and multiplies
it by the difference of the next two Jethers encountered as we
go round the circle. If we begin with 9 and multiply it by the
difference of the next two lettcrs, we get yXz—z); and if we
do the same thing beginning Wzth 2%, we get z%@—y). The sum

2y —2) FYle—x)+2* (5 —y)
consists of the first t,err:ri plus the two similar terms one gets
by moving on roun@éhé cycle. Moreover, the sum is unaltered
if throughout we'write y for x, z for ¥, and z for z, for such
a change mexély alters the order in which the three terms
appear. '\~ '

This‘@j;\’iiroperty is characteristic of what is called a cyclic
exprgsﬁihn, though an expression need not he a sum of three
sepdrate terms in order to have the property. For example,

A | (y—2)z—z)(z—y)
is unaltered in value if we write z for y, x for z, and y for =;
such a change merely alters the order of the factors.

3.3. DEFINITION. An expression in x, y, z which is such that
its value is unaltered when we write o for &, 2 for y, and x for z
18 said to be CYOLIC in , y, 2.
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We refer to this change of variables as ¢ OYCLIO CHANGE OF
VARTABLES,

When we write down any cychc expression it is advisable 1:0
observe the cyclic order of the letters ; thus we write be{-cat-ab
and ot ae-ba--cb, or again, we write abc and Not aeb.

The > notation is again useful in dealing with cyeclic expres-
sions; when the variables are z, y, =z

3, #%(y—=) denotes #2(y—z)-+-y*z—a)+23z—y),
> «? denotes x* -y +22,
and go on. 2 A\

4.* Factors and identities

4.1. The remainder theorem, coupled with a eﬁ.reﬁﬂ con-
sideration of the degree of a polynomial in two,,ﬁhree, Or Imore
variables, often enables us to find the factorslafithe polynomial

in question. We give some examples of phe}p}'ocedure.

..\"
PropLEM 1. Prove that PAY,

a*b—c)+bc—a)tcta— b) S » (b—c)(c—a}(a— b).

SorLuttoN. Denote the expresaion on the left-hand side by F.
We first think of ¥ as a quadljélfié in & whose coefficients involve
b and ¢. When we put a2< b, F = 0; hence (Theorem. 2) a—b
is a factor of F. o)

Similarly, we see'that b—¢ and ¢—a are factors of F.

Since F' is of t¢tal degree 3 in a, b, ¢, there can be no factor
involving a, Be other than the three factors b—e, c—a, a—b.
Any others “fctor can involve only a numerical constant

Theoren{"a ‘Corollary 3). Therefore
K\ F = k{b—c)o—a)(a—b), ()

Wnei’e k is & numerical constant. The value of & can be found
Su'either of two ways, (@) and (b) below.
{a@) The coefficient of 225 in F is -+1; the coefficient of ¢%
in k(b—cYe—a)a—>b)is —k. Hence (by Theorem 6, Corollary 2)
k= —1.
b)) Put a = 0, b =1, ¢ = 2 in the identity
a*(b-—c)+-b¥e—a)+cHa—b) = klb—clc—a)(a—b).
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Weget = 04244(—1)=&(—1).2.(—1),
ie. = —1.

ProBLEM 2. Prove that

> adb—c) = —(b—c)(c—a)a—b)at+btc).

SOLUTION. As in the solution of Problem 1, we see that
(b—c)e—a)(a—b) is a factor. Since the left-hand side is of
degree 4 and is cyclic in @, 5, ¢, and since the produect.
(b—¢)(c—a)(a—b) is of degree 3 and is cyclic in a, b, c, it follows
that the remaining factor must be of degree I (Theoreﬁ‘l 6,
CororLLaRY 3) and must be cyclic in @, b, ¢. But (the only

expression{ that is of degree 1 and eyclic in a, b, ¢ is’ h{a+b+tc),
where k is & numerical constant. Hence ‘O

> afb—c) = k(_a+b+c}{b~c){c—_d)(h——b).
We find that £ = —1 either by considering the coefficients
of a%, or by giving o, b, ¢ partlcular w}ﬂes (as in Problem 1):
PROBLEM 3. Prove that ’
e—y—2)y—2r—2)z—a—a)"
=3 2~ Tyt T yttapz (1)
SoLutioN. The product is homogeneous and of degree 3 in
x, 4, z; 1t is also cychc\m z, ¥, 2. [The expansion must therefore
be the sum of begqls of degree 3: and the possible types of
terms of degree™3 in «, ¢, 2 are
3, one ﬁm'is;ble taken 3 times;
"%, one\variable twice and the next variable in the cycle
o~
Qrice ;
gga>one variable once and the next variable in the cycle
AN twice;
_ \'"‘; * xyz, each of the variables once.]
' t Consider la+mb-Lne; if it is cyclic in g, b, ¢, then
_ latmb-+ne = h-t+metna.
Henee (I—n)a+(m— Db (n—mle = O.
This is an identity ; it is true for alf numerical values of @, b, e, Puttinga = 1,

b=0,0=0,wogetl = n;puttinge = 0,b = I,c = 0, we get | = m. Henee
the only cyclic expression of degree 1 in &, 5, ¢ is Ho+bteh

1 Once the reader has prasped the idea, the explanation ast out In { ] may
well be emitted from the solution of this and of aimilar problems.
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Thus the expansion. must be of the form

(@ y 2+ bly"e et -Faty) fely2 +eat fay)+daye,  (2)
where ¢, b, ¢, d are constants.

There are several methods of finding a, b, ¢, d. We shall give

two methods; of these the first is the more straightforward,
though it demands a little care.

Mcthod 1. The term in &* in (1) is got by taking the term/
in = from each bracket; it is #(—z)}{—2) = 423 and @ =1,

The coefficient of ¥% 18 —1—1+1= —1 [we take R fmin
two factors and 2z from the remaining factor; there are. ‘three
ways of doing this]. The coefficient of y2? is 1—I+~1‘-— —1;
and b = ¢ = —1.

The coefficient of wyz is 2. [When we také % from the ﬁrst
bracket we get 2yz from the product of the sécond and third
brackets; when we take x from the se fddt or third bracket,
there is mo term w2 in the produpt § the remaining two
brackets.] Thus & = 2. This gives’ as the expansion of the

product (1), S a— zysz_. 2 yz2-[- 2xyz.

Method 2. Check first Wheiaher the term in y2% is the same
as that in 22 or dlﬁerth from it. If we interchange v and 2
in {1) we get
&= \zﬁy}(z —y—x)y—r—2),

- which is the sa@e as (1), Thus (1) is symmetrical in ¥ and 2
and hence by =8 in (2). [If b were not equal to ¢, the 1n1;erchange

of y and £'would alter thé value of (2).]
Havyi ‘checked that b == ¢, we may write
.'\" (x—y—2)y—2—x)z—x—Y)
= a(zty+20) Hb(yPet e Haty -ty et o) +dayz, (3)

"where a, b, d are constants.

N\

Putx =1,y = 0,z = 0; we get 1 = a.
Putx:O,y'=1,z:1;weget0=2a—i—26,orb—s —1.
Puto =y =2=1; we get —1= 3a+4-6b4d, ord = 2.
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ExamprEs VII

I. Which of the polynomials
(i) 202+ 4oy + oy, {i1) 3a®—dgpt,
(i) de?-22-+ by, (iv) 4+ 2oy -+ 5y?,
is homogeneous in o and y?
‘Which of the polynomials

(v) 3adyit By, (vi} 304 4y+ 5y
is homogeneous inz, ¥, =t N
2, Prove the following results by actual substitution, and wﬂ&hout
guoting Theorem 17:
(i) When f(z,y) = *+ 3%y + 37, flaw,ay) = a'f(z,y); |
(i} When fix,y,2) = 2242 —2y2, flbz, by, b2) = b”f(—’fs ys z))
(iiiy When f(w,v,2,£) = 2343 488 —y2z, fi2x, 2y, 23),2‘6} = 8f{x,y.z,¢).
3. Of the following polynomials some are symmetr"ical in &, ¥, z, and
some are not. State which arc the symmetrical, ones.
C )y @yl (ii)ﬁiéa}nzx + 2y,
(1) «?y-tyix+zyz, (iv) EE B - 28— Bz,
(v) y“z+z"w+m"‘y+yz3+zma+xy3
4. Prove that bo(b—c) is an albematmg fanction of b and ¢, and that
. belb—c)f-oalc—a)tab{a—b) 1s&n alternating function of a, b, ¢.
Hint. When we mtorchango & and ¢ in the latter function, we get
cb(oxb)—[—ba(b —a)+ac(a—-¢).

5. Write down ﬂ}g\eyohc expressions in a, b, ¢ of which t.he typical
terms are

@ b;{b\fseﬁ, (i) a¥b—oc), (ifi). b5 —e?,
)b+, (v) a%, (vi) afb—o).

1.te “down the cyelic expressions in &, ¥, z of which the typical
. t.ermsére

\'. ) at, (i) =y?, (1) yz(y—z), (iv) 2422
\"\3 “7. Prove that, with the E notation of § 3.3, '

¥ yxz— :c} =3 yzt— 3:cyz.
8.* Prove that '

X yly—2) = —(y—alz—a)(z—y)
B.* Prove that :
fiy I be(b—c) = —(b—e{e—a)a—b) = = ¥ at(b—e¢),
(i} 3 (b4e)(b?—c?) = Ea c(b—-c) = —(b—oc)c—a)a—b).
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10.* Prove that
(1} X be(d®—ct) = —(at+b+e)b—c)c—ala—d),
{ii)y X b%*{b—c) does not contain b—ec as a factor.
11.* Prove that, for every positive integer n = 2,
a®(b—c)+b*{c—a)+eMa—b)
contains {(b—e¢){c—a){a—h) as a factor.

12.* Prove that
a®(b+6)+b™(c +a) +e"{a+-b)

does not contain b+e as a factor when neither ¢ nor ¢ iz zero.

N
\O
N
O
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CHAPTER VIII

RATIONAL FUNCTIONS: GENERAL THEORY

1. Preliminary
L.I. A rational function is the ratio of two polynomials; in
the language of elementary work, it is a fraction in which th
numerator and the denominator are polynomials. The denomina-
tor must not be zero, for arithmetic does not includ&:any
dsfinition of ‘division by zero’. Values of « that would ‘make
the denominator zero are excluded from the theoryéf rational
functions; for example, when we write K2,

2 _ 1

2e—2" -1

L4
.

N

: {7

we shall mean that the two expressionsglare equal for all values
of # other than 1. When z — 1 peither expression has a
meaning. )

¢

1.2, The reader is familiar with éxamples of the type ‘ Express

LB 2
R\Zsrss;
as a single fractior%'\’i:hia working of which is
1 _ B w22l e (1)
FHINEAZ2 @ +De+2) T T @r sy .

It is ahg@}"possible to express the sum (or difference) of a
numbenof fractions as one single fraction.
In}:ma,ny branches of mathematios we need to be able to
mpeﬁform the reverse operation, namely, ‘given a single fraction
§ Whose denominator breaks up into factors, to express the frac-
~ tion as the sum or difference of & number of simpler fractions’.
This reverse operation is called ‘splitting the given fraction
-into Partial Fractions, that is, finding the fractions that form
‘the separate parts of the given fraction. '

. 1.3, Before trymgto find these partial fractions, we first look
carefully at the kind of Tesult we get when we add and subtract

| \

SN

N
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certain types of fractions. The usual methods of elementary

algebra givet
1 1 _z48—(a41)_ 1
41 x+2  (tl)e+2) T (@+1)+2)
3° 2 3(7x—4)+2(20+5) _  26r—2
St B Ta—d— (Gl B)Ta—4)  (Gatb)Te—4)

On the left-hand side the degree of each denominator is unity,
while each numerator is a constant; that is, in each fraction{
the degree of the numerator is less than the degree of bhe
denominator. In the fraction on the right-hand side the degree
of the numerator is again less than the degree of phe “deno-
minator. AN

Again, elementary caloulation gives ‘
x—|—1+ 2x x3—|—x2—!—2x+2+2x3+2x Bx34-...+2
2H1TFELET T T @EDEY o)D)

Here too, in the resulting fraction onghe rlght, the degree of
the numerator is less than the degreg bf the denominator; and
it is the sum of fractions having the same property, the degree
of the numerator less than the.degree of the denominator.
When the degree of the niitherator is less than that of the

. denominator we refer tosthle fraction as a ‘PROPER FRACTION,

This technical term wﬂl%e used for the sake of brevity.

1.4, The ex&mplf}* of § 1.3 indicate that any given ‘proper’
Jraction whose denommator factomzes can be written as the sum
(or difference) of two or more ‘proper’ partial fractions. This
indicated result can be proved, but its proof involves the use
of theqiésﬁs that are too advanced for inclusion in this book. .
All we, do here is to note the fact that, when we start from
a, Pfoﬁer fraction whose denominator factorizes, we can express
that fraction as the sum of two or more proper partial fractions.
We use this fact in all our examples,

2. Method of finding partial fractions
‘We shall work numerical examples and make no attempt (at
this stage) to deal with general theory.

T We use the identity sign to denote the fact that the equality h()ldg
independently of the value of .
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Nore. In the text of the following examples the words
within square brackets are by way of explanation to the reader;
they do not form a necessary part of the solution when the
reader is working out examples for himself.

2.1. Denominator the product of linear factors.
PropLEM 1. Bepress

_ 2x43 )
@—i)a—2)(22—3) \
as the sum of partial fractions. ¢ \‘\
. '\
SoLuTron. Let >y
2213 A B O
— = 1
F D a—=DE7_3) 7= 2~ka 3 (1)

where 4, B, ' are constants, [Ea:;plan tiwon. The fraction on
the left is ‘proper’. The degree of #he denominator of each
fraction on the right-hand side is\6n2; to make these fractions

fproper’ each numerator must. be of degree less than one, and

so must be a constant.] &
Multiply (1) throughout by (x—])(:v 2)(2x—3); we get
243 = A{@—2)( x~—-3)—+—B(x N2x—3)+Clz—1)(x—2).
[ Explanation. We mﬁv substitute, in turn, the values of # that
make the factorg\z—1, x—2, 22—3 equal zero. Note these
substitutions.] ()
On subsbibuting in this identity
;:{'.é I, weget 85=A(—1)(—1), ie. A=235;
,\\m“2 we get 7= B(1)(1), ie. B=1;
A\ e=3 weget 6= Cl)—1), ie ¢= —24
Hence )
o 2243 _ 5 n 7 24
(@—1)@w—2)(2c—3) " z—1"'2—3 %a—3

2.2. Denominator having a guadratic factor.
ProBrEM 2. Express '

8o+l
D=1+

as the sum of partial fractions.
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SoLUTION. Let _
Sz 1 A B Cr+D
{x+1){x—1){x24+1} x+1+x—1+ att-1"’
where 4, B, C, D are const&nts. [ Baplanation. The given
fraction is ‘proper’, and so we make the degree of each numera-
tor on the right less than the degree of the corresponding
denominator.]
Multiply (1) throughout by (x4 I){x—1)(z?+-1); we get
32241 = A(x—1)(@2+ 1)+ Ble4-1) (@24 1)+ .
+(Cat-DYa4-1)e—1), L (2
[Baxplanation. We first substitute the values of = that mal‘re the
linear factors a1, «—1 equal to zero.] N
Substituting in this identity. ’ﬁ.'\‘
x=—1, weget 4= 4(—2)(2), iexd'= —1;
#=1, weget 4=B(@2)2), A& B=L
[This leaves € and D still to be found., Slhce (2) i an identity,
the coefficient of each power of @ onf the one side is equal to
the coefficient of that same powes ‘of z on the other side
(Theorem 5, Corollary 2). This fagt enables us to find ¢ and D.]
Since (2) is an identity wehave, by equating
the coefficients of 2 in (24
OF A4+ B+O, ' (3)

(1)

constant terms in (2),
¢~ v=—-44+B-D. (4)
But 4 == Aland B = 1; hence (3) and (4) give
O ¢=0, D=1

AL
Henee & N

AN 32+ 1 = .1 +_L_|__1_,

W @k DE—1)@1) a+1 a—1 z*}1

[ Explanation. Instead of equating the coefficients of #® and the
constant terms.in (2), we could equate coefficients of 22 and
coefficients of x; but we select the easiest pair. We need only
two of the four equations that can be got by equating coeffi-
cients in (2) becanse we know A and B already and we are -

trying to find the values of the two constants ¢ and D.]
4863 H

7N
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ProsLEM 3. Erpress
' Zxta—1
(1) +2-+1)
as the sum of partial fractions.

SorvuTIoN. [We omit explanations; the principles are the
same as in Problems I and 2.]

2% —1 4 B4
Let (;v——l)(_:2-l—x+1)5x-—l+a:9+1_—t—l’ \
where 4, B, C are constants, Then \\\
232 x—1 = A(@+x-+1)4(Bz- }-C)(:r——l) (1)
Putz=1;weget 2=234, A=35
Equate in (1) \\
coeffs. of x?; we get 9= A+4B, 38 B=1§;
const. terms; we get  —1 = A—”q,:. ie 0 =24§
Hence i S & »> 445

(x_-l)(x2+x+1) — 3'(\1;—1) T3Gitat 1)

2.3. Fmotaons having a sqmre (cuebe) in the denominator.
ProsrEM 4. Bxpress,
OV 3224221 '
T ey @
as the sum q,f'é;hrtial fractions.

Explaﬁ}mon In this problem one factor of the denominator
is 8¢ ared. Before we work out the solution, we explain the
rea}s for the form of pal‘tl&]. fraction used in the zolution.

.~Smce the glven fraction is ‘proper’, the partial fractions must
: \ “be ‘proper’; that is, the partial fractions are of the form
A Bx4-C :
where A, B, (' are constants. We can, however, break down
the last fraction into two simpler fractions. We have, in fact,
Bx1 0O _ B{g—1)+B+C B | B4C
1) 7o Y R b P ¥
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or, on writing D instead of B+, we see that (1) is of the form
A B D
x—2+x—1+(;t:—1)2’
where 4, B, D are constants. THIS I8 THE FORM APPROPRIATE
TO A FRACTION LIEE (1), When the denominator contains a
cubed factor (Problem 5) the procedure is similar.

SoLUTIoN.

_ o _
Lot $2242% 1 A . B D

e—1PE—2)  2—3 51" =1 Oy
where 4, B, Il are constants. Then % O
3ot 22—1= A(w—1)2-+ Blz—2{x— l)—]—.D(:p—Z)
Put z = 2; we got 15 = 4, \
x = 1; we get 4= —D, O
Equate coefficients of #2; we get 3 = A—KB\SO that
B=3—-15= H—‘lf&

Swt4-2x—1 _ 15 '~12 4
(x—l)g(x—Q-)_a:T'«Eg x—1 (@—1)F

Hence

ProBLEM 5. (HARDER.)% :E’x:press
OV 4zl
E— 1)} 2a—1)w—2)
as the sum of partial fractions.
¥4

SOLUTION:.j\:I:ét
.“\‘¢
43341 y: | B ¢ D E
(x— )3(‘2%-— x—Z) T z— 1+(a:—l)2+(x—1)3+2x—~1+x—2’

Wheﬁa A, B,..., E are constants, Then
\ A A(a:—1)2(23—1)(9:—~2)+B(.v-—1)(2x—-1)(a: 2).
+ C(22—1)(z~2) 4 Diz— 13z —2)+ Bla—1)32z—1).
Put
r=1,weget 65=0C.1.(—1}, ie. 0= —5;
=4 weget §=D(—I}—4%), ite.D =028,
x==2;weget 33=F.53 ie. B =11.



100  RATIONAL FUNCTIONS: GENERAL THEORY

Equ&te
coeffs. of #t; we get

0=244+D12E, ie 4 — —15;

const. termg; we geb
1=24—-28B+20+L2D L1,

ie. 1= —30—2B—10+16-411,
or B= 1 A
Hence .
441 L\
(e—1P2x—1){z—2) ' O
15 7 5 8N 1
= _;a:—l_(3—1)2—(x—1)3+2{—\%’1_’_x—2'

2.4, Method of checking the algebra. Thesimplest check on
one’s work is to test the answer for sorge\\pmicular value of z;
usually @ = 0 will serve, though it #ill not always be an
adequate check if we have used the'step ‘equate the constant

terms” in the course of the worki[{or this step
putting 2 — 0 in the identity]y For example,
Check, Problem 1. Wheftk = 0,

. K 1
.I—J.H.S :: iﬁ —_— § ;
\‘,.

\ i 1
BRI~ 5=~}
Check, xP\}ﬁgEém 2. When = 2,
O 13 13
- ""L.H. . R o— = —;
§ S =311
PR\ 1 1 —5+15438
O RHS — 1] - ——"271 0

~d
\:

"3. Improper fractions

is equivalent to

13
=

3.1. When the degree of the numerator is equal to or greater
than the degree of the denominator, we say that the fraction

is “improper’'. An example is
Sep-5 4.7
(x—1)}x—2)"
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- When we divide 3a%-4- 527 by (z—1){z—2}),i.e. by x® — 8z 2,
the quotient is 3 and the remainder is of degree one in x. In fact,
3at 5247 = 3at—3x42)+ a1,

Jat4-8x4-7 _ ldz+1 '
and D=2 — T a—lw—2) ()
By § 2 we know that we can write (1} in the form
32?4 BT 4 B )
-2 Str—iti % @\

where 4 and B arc constants. We do not need to work ouf the
remainder ‘ldw+1 in order to find A and B; the fol]()wmg
problem gives the method of procedure.

7
S

."

Proerem 6. Bapress w'\'\.'
3?46+ T B
(WE:T)'(‘-N:Q‘) in the form C + 1\;:3 3
where O, A, B are constants. \ v

SOLUTION C is the quotient whert Bm‘z—i— 527 is divided by
—3z-+2; this quotient is 3 acuglfgo C = 3. Hence
3x2h5u4+7 _3 A B
(x_l)(x_g) :—’o ] _1+x_72’
wherc 4 and B are consi‘@nts and
3L 5x+T K{i(‘x—-l)(m 2+ Af{x—~2)-+ Blx—1).

Put ;z: = 1} we get 15 == — A4,
¢ :}:_2 we get 20 = B,
x'\
INY Bxi-Bx4-T 15 29
Hence \( =3— .
\ (g—)(x—2) xr— l+x 2

3@. It may be worth while to prove that we cannot find

\'"Ergxsta,nts A4 and B such that

3xt-Be--7 A B

F—)a—3) o= Ta—2"
To prove this we observe that the sum of the two fractions on
the right-hand side is

A(x 2)+ B(z— 1) _(A+Bjx—(24+B)
(x-—1){z—2) C(a—Da—2)
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© But 3224537 is of degree 2, while (4 B)x—(24+ B) is of
degree 1; hence the two cannot be identically equal [Theorem 6,
Corollary 3].

This example is sufficient to show. that when the degree of
the numerator is not less than the degree of the denominator,
the form of partial fraction used in § 2 is not adequate by
itself; the original fraction is then the sum of two parts, (1) the
quotient of the numerator by the denominator, (2} the partial
fractions corresponding to the factors of the denominator:

oA

Examprrs VIII a4 . O

!. Find the numerical values of the constants A, 3? Y, D in the
following identities:

y oo St _ 4 B ”Y'
[‘_ Dz 28 a1 —g+x_3
@ 23 _ 4 B o NGe,
E-DE—2F a1 s @2
i+ 1 :’A’ B Ox-+D
e DZe— (et Dy S (7o iy ul

Hinr, Note the ‘Rubsmtutlona qaed in the examples of § 2, followed
by ‘equating coeflicients’ whar;z necesaary

2. Express as sums of pa,rtla,l fractions:

. g2 . 2

Y & 1)(8'\%1)(% ) " @ DE—2E—9’
2 . 2
W) PNt oET 5 W) e hE 5

Hinm. U@the method of Problem 1.
3. @Qcmier .} Express as sums of partial fractions:

..\f." X (xhn(?;f:—_f;(us) a (:o—ntgzlg)(x—a)’
O @ ey B
4. Express as sums of partial fractions:
O =D ) ey
e ) (x—fﬁ%ﬂ'

Hinr. Use the method of Problems 2 and 3,
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5. By using the method of Problems 4 and § find the numerical
valnes of the constants A, B, €, [} in the following identities:

1 A B ¢

0 ooiye—s =it ot T

© o =i et e

(i) m};il T Bl)* - (xfl)8+“{)'§’

(i) m’{xx 11)2§xé+2?+_0— (le)‘ A

.2
. Note. In the concluding stages of (iv) equate cocflicients of-2% and
of #2. Fquating constant terms will give the same result ag petting

# == 0, which comes in the earlier stages of the sum. R "«:
6. Express as the sum of partial frections: w\ v
) ] ANy
Y e—2pz—3y xw@%ﬂ’
1 x
W SR —3) (“” (x Dm—2p¢

Hixt. Use the method of Problqms 4 and 5; (ii) iz like B (iv), in
which ‘equating eonstant terms’ a,t”the end gives no new informeation.

".
3

1. Various types. Express ag tHe sum of partial fractions:

(i) _.52_,‘3?_& (i) _ 4
= SEZH— D’ Ho—1)e—2)
3242 ) 2
o (x DD ) ey
z—1 . bl — G- 2
e a1y ™ a-TrEe—1
AV .
8. G}yen that
NS 5—a 2 3 1
© D@3 -1 -2 73"
write down, by inspection, the partial fractions of
4—ux .. 66—

(i1)

e o (i

9. (Easy, but of frequent use.) Expross as the surn of partial fractions:

. 1 .. 2z
(i) P (ii} w1
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10. Express each of the fractions

¥ 4-22—5 xt—2x--3
(z—1)z—2)" {(x—1)zx—2}
. . B . €
In the form ATE + =g

where 4, B, € are constanis.

11. Inventing your owwn exomples. In one orznore of Questions 2, 3, 6, 7
first replace x by x—1; _
then express the result as a sum of partial fractions; A\
then check your answer by replacing = hy —1 in the answobs %o
the original question. 4 \\\'

12. Inventing your vwn erxamples, Write down a simple sum of frac-
tions, such as Al

1 2 3 A )
5+ 3t 37 +¢0)
2—2 " {@—3)®  (z—- 3} (¢
and express the sum as a single fraction; put thig'fraction into partial
fractions, whon you should obtain the fraction{you started from.

4.* Equal ratios \ \ ’

4.1. In many parts of mathema.trcs, notably in algebra and
in algebraic (or coordinate) ggmmetry, it is useful to know how
to manipulate two or more, et;ual fractions. The theorems that
follow provide - the key t0 this manipulation. The student
should be watchful fér opportunities to use the theorems in
order to simplify h\;g‘a’lgehraw work,

N,

4.2, THEQ]@}I 18. If D_l = 5, and a, b, ¢, d are any con-
stants, t@ei}\'“" :
’\:3 ’ aN+bD; _ aN,+bD,
R\ \ eNy+dD, — eN,-+dD,’
A N, N,
"\WProor, Let S T2y
N D, D,
Then N, = Dt and N, = D,t. Hence
alN, 6D, D(at+b) __at+b

(£)

eN+dD, ~ Dfatd) T citd’
aNg+0D, _ Dyfet+b)  at-tb
cNy+dD,  Dyfettd)  ctrd’

© (i1
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a0, alN, 16D,
eNy4-dD, — oNy-HdDy

Note. In view of our remarks in §1.1, we may divide by
D, and D,, which are not equal to zero.

and so

4.3, Some examples.

(1) Let m—i—l-{-,\/(x2+1) — y_“z.
a+1—pflz2+1)  ytz O
We can simplify the shape of this by applying Theorem 18
with ¢ =1, b =1 (i.e. adding numerator and deno;nma.tor to
form a new numerator) and ¢ =1, d = —1 (Le/ subtractmg :
denominator from numerator to form a new Henommator)

This gives 2z4-1) % N
WD) T —2aC
2+l _ géf'z
or J@E+) Nz
. I ‘\‘lll
(ii} Let y %%i—z)_t“'v{i

Then U {J{T}x)+«fm}+{\f(1+mu«’x}
WH—:E}—}— v} —{f (14 &) — e}

»\J'[(l'{‘x).
(’\'"” - 8 2
o428  xtly
(i) e SatB  Szty’

.Wé”"notice that
N 4 28—2(2a-B) = —3u (containing « only),
Ya—+B—2(at+28) = —38 (containing § only).
We therefore apply Theorem 18 in the form

Y)Y N,—2D,

ON+D, T 2N+ Dy

This gives E = g
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4.4. TuEOREM 19. If there are r equal Sfractions,
MN_N_ N
D, D, T D, _
and a, b,..., k are any r numbers, then each Jraction is also equal to
aMN,+bN,+-...4-kN,
aD+bDH ..+ kD

provided this denominator is not zero. N\
Proor. Let A\

=%=...:§£:t. O
D, D, ’

Sl

Then N, = Dit, N, = Dyt,..., N, = Dy, and s
AN +bNet- . kN, _ HaD,4-bDytaghkD,)
e +bD... kD, — @Dy +b Dy 00D,
which proves the theorem. ¥ \x\\\“
4.5. The next theorem covers the; one case excluded by the
theorem we have just proveds)

:t,

- THROREM 20. If there gqé'f;* equal fractions
Ny N “ _N
E?_‘ﬁa = e 5= 5:— (Ni = 0).-
and the r numbe(.s\’d;':b,..., k are chosen so that
O aNAbN L RN, = o,

then also :~1\“:" eD 4Dy kD, = 0.
Comﬁih}f. If the r numbers a, b,..., b are chosen s0 that
& aD 48Dyt ... 1 kD, = 0,
‘"\tk'e’«n alsq aN,+bNp+ .+ EN, = 0.
* Proor, Let N N —‘M‘—t
L, b " DT

‘Then N, = Dit, N, — Dy¢,..., N, = D.t. Moreover, since N] £ 0,

it follows that £ 7= 0. Now, the numbers a, b,..., k having been
chosen so that a.Nl—f-bl\f;—i—...—I—M\ﬂ — 0, '

T Notico that the last step uses division by aDy b1, L ...+ kD, ; if this were -
zero, the step would not be valid,
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we have ttal)1+sz+ ot ED) = 0.
Butt 0 . D 4bD.. kD, = 0.

Proor oF coroLLARY. The numbers g, b,..., & having been
chosen so that

aDA+b Dyt ...+ kD, = 0,

we have tHa D +b Dy A-kD) = 0,
‘ie. © o aN N RN, = 0. 2\
4.6. Some examples. | O\
(i} ProBLEM, Find x:y:z given that ' . \} )
wyts _y—rte _amaty O
3 4 5 0

Sorution. Each fraction is eqlal to
NAN AN, (O

Q+&+Dﬁx
Thus T—ytz x~{—y—l—z‘
3 12

On applying Theorem Ig'ﬁo.ﬁhese two equal fractions,
ztytez vyt —le—ytr) 2

78\J = :
12 \\ w4 9 9
Working similarly)with the otber two iractions we get
o % 2% 2
o, R TR
Henee\\\ x:yiz="7:9:8,

NOTE The method iz not essenfial to the solution of thig
_shm : it is peater and quicker than the more laborious method
of solving sz—y+2) = Sy—2+2),

4(z—x+y) = B(y—ztx).

(ii) ProsLEM. (HarDER.) Find values of @, y, 2 to satisfy the

equations

—yz _ Yt | Pemy g
I T T
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SorvtroN. Since eack fraction is equal to %:l& and also to
Ny— N,
Dy—- Dy
B—yz—y'tax  yP—ze—2Ptay
1 —1 ’
or E—y)x+y+2) = (y—2)z+y+2). ~
Hence, either .
(@) x+y+z=0, whengy=— —(x—[—z){ \\\
or () x—2y+z==0, wheny = %(x—f_z‘)..,“ \/
(@) When y = —(z-+-2), :\ :
| 2t —1) =
gives, on substituting for y and simplifying, -
a2 zpa? 3’:0,'
ie. (T—zw)(c—2u% = 0,
whers w is a complex cube rpptof unity (p. 39). Hence,
either * = zman@?g}‘% —2(14-w) = zwf,
or T = zw?gﬁ&"y = —z(l+&?) = 2.

In the first case #he given equations are satisfied only if
(rw)—w?.2 = .9'\‘Hence the solution

X TiYyz=w: w1,

_ though 1tsa.t]‘:sﬁes TP—yz = (y2—z2)/2 = (#*—2y)/3, will not

satisfy the-given equations as a whole.
Sittilatly, » = 262, y = 2w does not satisfy the given equa-
tiong:

- O6) When y — jz1-9),

\ }

Hat—gr) = y—zz
gives, on substituting for y and simplifying,

T22— 22— 522 == ();
i.e. (T2+4-82)(x—2) = 0. _
Hence, either  — 2, ¥ == z, which is not a solution of the given
equations as a whole, or v '

£ = -_gzs Y = %Z.
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The latter is equivalent to
& = —5t, y=1t, z = T,
where { is an arbitrary number. This satisfies the equations if
(25— T)2  (14-35)2  (40+5)8

2 — 3 =%
ie. if 2 =}
Hence the solutions of the equations are
7 .
.mz_‘\_f-ﬁ’ y.:E’ Z;Ué \'\\
and x:i Y = __1_, 2= — 7 "~. bt
~2’ N2 V2

(m} ProerEM, Find the solutions of the equmtwnz\
24y  ytz _ ztx \
2 ~ 71 b \\“
SovuTioN. Since 7—5—2 == 0, we nms\t have (Theorem 20)
y+2—(ete) Ly = 0,

ie. x =vl‘)
s gl y Wre_ 2
This gives ¥< 7 =3
and these are satisﬁed'\ﬁ'ﬁy — 2z. Hence the general solution is
=0, y=2, z = B5t,

where ¢ is an a;’lii“ﬁfé,ry number.

o

- 4.7. ﬂ@tmnm 21, Given r egual fractions,
N A K L o),
“(“ ) D, T D D,
il a any homogenecus function f{xy,@,,...,%,) of degree m in the
r variables x,, %...., %,, then
Nyt (ﬂ;)“'_j_'(l__\_ﬂ,Nz,...,M)
TRV s o1
provided that f(D,, D,,..., D)) is not zero.
Further,if oneof the two functions f{Ny, Ny,..., N,.),f(Dl, D,...D,)
18 zero, then so is the other.
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Before going on to the proof of this theorem we give, as’
illustrations, one or two examples, :

: o ¢
ExamrLe 1. When L

(a)z a*+¢*  ac  latmac4nc?

b sz+d2“w—w_2_{rmbd+nd2.
EXAMPLE 2. Let 224 y3+2% = 1, and let’ ~
WA )
I' m n ‘ O
Cn 4w [ebyi e O
Then I " m m ,‘/gz_i_mg_!_,{g\
K\

AT
This type of application of Theorem.‘ﬂi’ 18 very widely used in
analytical geometry, N\ :

ExamPLE 3. Let 3bd'—2f{:¥b’, and let

N

=4

7

R

ole

c r—
==

Then also 3@—2&% x,\b
\\
4.8. Proof of Theorem 21. Let each fraction be equal to f.
Then N, = Bt N,—= Dyt,.., N.— D.t, and £ = 0. Thus
;\’ f{M:NE!"'sM) =f(Dlt! -th!"'-' 'Dra)
and{this (Theorem 17, Corollary) is equal to

O - f(Dy, Dy,..., D).
) Hence f(¥y Ny-..; N) = 0843, D,...., D)
and the two parts of the theorem follow.

4.9. A general method for equal fractions. The reader will
~ have noticed that the proofs of all our results in § 4€ have been

obtained by equating each of the equal fractions to a new
variable £. It is often useful to take this step without reference
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to any formal theorems. For example, to solve the problem of
§4.6, (i). Let

E..T.yj_z — ;y_z‘i‘x o z—x+y —
3 _

4 o 5
Then e—y+z = 3, (a)
—a-+y+z = 5, {c)
whence 2 — 7t [add (a) and (b)], 2y = 9 [add (b) and (e)ln"
2z = 8t e
. Va \
ExameLes VIII B* W\
. g+l _ (14a)—(1—a)p RS
1. Given that y—l = Qxary (1 ey ,,"\"\’“
prove that y = —(1+a)/(I—z)% AS

. y£3 _ Y1422+ 3000
2. Given that 21 = 211 20—y K&(}
prove that y = {1+ 2x)/H{1+x). \S
3. Solve the equation W
2424 (kB v
w2 J@hks)
In working Examples 46 use, $he ‘method of § £.9.

4, Find z:y:2z when Q
2y by— 28NN 2y47—2r  2zta—2y
— ¢ _ = = - .
—‘1\ 6 4
5 Find x:4: Hwhem
33:%23;—!—2 Byt+¥ziw _ Jztlzty

.\ atE 13 13
. Fmd\&: ,y z when
QO 2wty—z _Bwty—2 atytz
Q) 3 g 6
\? “Find the solutions of the equations
\ =+ 2y y—i—4z =tz

3 4 b

8. Soive the equations
vty Zytz _wte—y

7 0 3
9, (Harder.) Solve the equations

(typ—2 _ (y+2)t—2' _ (ate2)—y® o
—3 5 - 1 ’



CHAPTER IX*
RATIONAL FUNCTIONS : GRAPHS

1. Limiting approach
1.1. Before we can draw the graph of a rational function of

x we must have clear ideas on how the function behaves
{A) when x is numerically large, positive or negative ; \
(B) when z is nearly equal to a zero of the denomjdabor.

We begin with a simple example, y = 1/2%; we éonsider (A)

~in §1.2 and (B) in § 1.3. Afterwards we draw'the graphs of

N

a few rational functions and show how the eonsiderations (A)
and (B) apply to them, \;

1.2. To discuss the values of y whep y= 1/a® and the values
of x are large, positive or negative. When =z is large and positive
(e.g. @ = 10% or 107) a® is also dadge and positive; y is then
small and positive. As z incréases indefinitely, through large
positive values, v approa,chesi:;ééro through small positive values.

A table of values bringé’ \out this fact, e.g.

x =10, 103, 107;
y = 0-001,\@0-000000001, 10-2 [+ twenty 0’s
\ followed by 1].
The gene;g,(é;}i'a;pe of the graph is given by Fig. 13.
7.3 |
N\v y

&

0 \ 10 s 100
FiG. 13

The curve approaches the line y = 0, but lies above it when
x is positive.

-When x is large and negative, ¥ is small and negative. A
table of values shows that y remains negative but approaches
zero as the numerical value of x increases: e.g.
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z = —10, —108, -—107;
y = —1/103,  —I/10%,  —1/10%,
~ The general shape of the graph is given in Fig. 14.

-0 - 16
; ; - -
Fic. 14 KoY
When « is negative the curve approaches the line ¥ ;ﬁ; but
lies below it. N

1.3. T'o discuss the values of y when y = 1jx? afa;d"i&ke values
of « are numerically small. When z is small andvpositive, y is

large and positive: e.g. .5\\;
z = 1{10, 17103, 1105
g=10%, - 10% (yVI0m.
The values of y increase i_ndeﬁnjtgljg}aas x approaches the value
ZOTO. SN
When z is small and neg@ti:ié, y is large and negative; e.g.
w—= —110LN\" —1j108,  —1/108
y= -1 10 — 1078,
The general shape of the graph for small values of z is given
in Fig. 15. »&~
R \
” \\\u . Y
.:,\*‘. N 3 =
O \
Fra. 15

The curve approaches the line 2 == 0.

1.4. The rough graph of ¥ = 1/x®. The general shape of the

graph is easily completed. Take one or two control points when
4368 ) I

N
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x is neither very small nor very 'large jeg.
r=14, —1, —4,
y = 1, 0-018 {approx.}, —1, —0-0186,
The full graph is:

=

Graph of y=1 x3)

Fic. 16 *\\\
‘\
The curve, as it goes off towards inﬁnity approaches, without

ever quite reaching, the line x»— 0 (m the parts 4 and B of the
graph) and the line y == 0 (in \the parts ¢ and D of the graph).
The lines thus approached are called ssymproTES of the

curve,
N\

A,
2. Graphs of rational functions

2.1. When e wish to draw the rough graph of a rational
function, we‘vse the following procedure :

{), JQ&k for possible turring-points,
(LQ\ Gonsider large values of x, positive and negative,
(m) consider values of # near any zero of the denominator,

\ / (iv) if necessary, plot a few control- -pointa or even (in some of
the more difficult examples) look for possible points of inflexion.

2.2. Exawerr 1. Skeich the graph of

_ 1
¥= 22417
SOLUTION.
i) dy _ —2%
de (2 1)2
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This is zero when & == 0; dy/dx is positive when x i3 negative,
and is negative when « is positive. There is & maximum at
2 = 0, y = 1. Bketch in the part of the curve near this point
(point A of the graph).

(i) When x iz large, y is small and y approaches zero as x
inereases numerically.

-When x is large and positive, y is small and positive.

When x is large and negative, y is small and positive. QO
This shows that the curve lies above the line 4 = 0 at both erlés
and we sketch the parts B and C of the graph. £\

(iii) The denominator, x24I, is never zero when ::B is real,
and so ¥ always remains finite. M'\g,
(iv) As control-points, take N

r= -2, —1, 1, Y
¥ = & % 4 ’%:‘*\%\'
Plot these points and fill in the graph.

\‘ Graph of y=

~\\ Fia. 17

x2+I

N/

O
23, ExamreLy 2. Sketch the graph of
N

2 \¥; . z—2
\ / y = x_g‘ .
SOLUTION. '
i) dy z—3—(2—2) _ 1
de~  (z—3) T @3

Thus, dy/dx is ahways negative; there is no turning-point.

(ii) To consider the values of y when & is large, we divide
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numerator and denominator by the highest power of  that
occurs, here 1. We obtain in this way

2
z—2 T
¥ =337 3
oz
Hence, as  becomes large, y approaches the value 1. Moreover,
y—1=22 o L )
' T3 r—3 O\’

Hence, when « is large and positive, y is a little grea(‘léér than 1;

when x is large and negative, ¥ is a little less thap I The shape
of the graph when % is large is

\ "\\\.
5 N’ B
JEERIONUNIDIRIR o JUN R _x:;\\;___ Py
AT SV
T30 .
Fre. 18
(iii) The denominator‘«ié\{%ro when x == 3. Let & be & small

positive number. O

_ A\
When x = 3?{:\.}y = 1—1—&

. which is large and positive,

When « *”';3}—}& Y = E_—T—;, which is large and negative.

The&h}pe of the gra.ph when z is nearly equal to 3 is

AW e
O \
. E"\i‘;v 4
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{iv) As control-points, take
x=20, 4, 2
Y= %, 2, 0.
These are sufficient to show how the part 4 joins on to part D
and how part B joins on to part ¢. The full graph is

~ As the curve goes off to mﬁ,ni%y it approaches the lines ¢ = 3,
y = 1, which are theref"o\re asymptotes of the curve,
S
.\’\s,l
3. Further qxainples (Harder)
\¥; '
3.1. ExampLE 3. Sketch the graph of

: *:\/':' r—1
RS V= e B
w\;:i‘f‘:bi.vmxon. .
Voo ay a?—20—1

Gz T (@—2)z—3)*
22— 9g—1=0 when =z=1++2.
These numbers do not lend themselves to an exact calculation
of y: s0, uniess we want the graph for very precise work, we

note that these values are approximately 2-4 and —0-4 and
* plot the turning-points (24, —5°8), (—0-4, —02).
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(i) When « is la.rge,'f"

1 1
x—1 z 21
y:mwzl_—g;g—;
T a?

‘80 that y is positive and small if « is positive, and is negative
and small if # is negative. The graph is, for large ,

y 2\
A A
~ \A)
— [V x{™\N
B « N/
(":‘

{iit} The zeros of the denommator are rhe \2 x=3,and y is
large when « takes values near 2 or 3.

When & > 3, each of x—1, 2— 2, a,nds\x 3 is pogitive; ¥y > 0
since] it is 4~/ . 4. \

When 2 << 2 < 3, y is +/4. ‘M,a,ndsoy<0

When 1 <z < 2, yis +/0%, and'so y > 0.

When x <1, yis -—/—~.xr and so y < 0.

These facts show that’the approach to the lines = 2, 2 = 3
is given by

& TN

®

w

€

ok

Fra. 21

N
7
N

T The sign == denotes ‘is appmmmat.ely equal o’

I Weuse /4 + to depote ‘a peositive nmmber divided hy the product
of two positive numbers®; and s for other arrangernents of the signs.
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(iv) Since y > 0 when x > 3, { joins with 4.

Since y < 0 when 2 < & <C 3, E joins with F via the turning-
point x == 2-4, yy == — 58, which we found in (i).

Finally, D must join with B. We need some control-points
to see how the join is effected.

There is & turning-point at z == —04, y == —0-2; other
obvious points on the curve are

x=1, . 0, —1, N
y=70 —& _% . O\
These points, together with the turning-point, enable m8 Yo
complete the graph. ' A7

FIG‘,& Graph of ¥ = 5=

If, fo aﬁ; particular purpose, we necded a more precise
drawing"of the curve, or any part of it, we should be obliged
to g£@§i& larger number of control-points.

a \"

3.2 ExampiE 4, Skeich the graph of
{x— 1)(22—1)
-y
SoruTioN.t _
Q) dy __ 3@+ 23
de (2210

1 Some simple calculations have been left to the reader. For example, the
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The possible turning-points are, approxiniately,
(0-7,—0-04),  (—1-4,3-05).
(it) When z is large,

9 3,1
—3z+1 Tz a2
Y = 3 = e 2,
wi4-1 1 _‘__IE
© O
and the curve approaches the line y = 2. «
oA
Moreover, 3 1 4 \J)
'—__‘_2 Y N/
y—2 = _4321—{—1 — ¥ ® i_i;’*
41T + 1 P e
a? .'»‘,\"
so that y >> 2 when # is large and negative, “and ¥ << 2 when
2z is large and positive. N\

This shows that the graph approa.}hes the line y = 2 from
below out on the right-hand side, and approaches it from above
out on the left-hand side. ,’;:a

.’
3\

(iii) The denomma,tor has no real zeros and so 4 never
becomes I&rge

(iv) Taking the Qo‘l}trobpomts

N\
PN \.E = "“'1; 0: %, 1: 2,
@ y=3 1, 0, 0, 06,

- suitably; Spaced with reference to the turning-points, we have

the gKa,”\h shown in the figure.

™ .

\‘;

$+

Fie. 23

reader must work out dy/dx for himself: he cannct see how the value is
obtained from mere ‘inaspection’.
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4. An application of the theory of quadratic equations

4.1. A glance at the graph of y = :cii-l in § 2.2 shows that

the line ¥ = £ will cut the curve in two points if & lies between
0 and 1, but will not cut the curve if & lies outside these limits.
The dividing values, ¥ = 0 and k = 1, fall into neither of the
above categories, for ¥ = 1 is a tangent to the curve and may
be considered to meet it in two coincident points, while y = 0%

is approached by the curve, which, however, never quit{a
reaches it.

A glance at the graph of y = (x—2)/(x—3} in § 2. g shows
that 4 = % meets the curve in one point for every, Val‘tw of k
except b= L m\

We now cousider, in one or two partlcular examples, the
question ‘Can we find out from the equatloybf the curve, and
without actually drawing the graph, Whe‘lshEr y takes all values,
as in the graph of ¥ = (x—2)/{z—3)" gr' whether y takes only
some values, as in the graphs of §-§ 2:2 and 3.22°

4.2. ExawerE 1. Show t}mt, for all real values of k other than

zero, the line y = k meets the curve
y(w—-—l)(m—3) =z—2 {1)
in two distinct real‘p\nts

SOLUTION. Wnte {1) a8 an equation in z. We get

7 ey—ayr )2 =0 ©
which iais’ycju&dratic equation in z provided that y # 0.

The\teots of this equation are real and distinct if
~O (4y+-1)2—4y(3y-+2) > O,

3

. i | 441> 0.
But this is satisfied for every real value of .

Hence, whenever y (5% 0) is real, = k say, the equation (2}
hag two real distinet roots, @, and x, say, and the line y = &
meets the curve in the two points (@, k) k) and (x5, k).

When y=0, (2) reduces to « = 2; and so the line y = 0
meets the curve at the one point (2, 0).
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ExampLE 2. Prove that no voint of the curve
yle—2)(w—5) = —{z—1) (1)
lies between the lines y=tondy=1,
Sorurion., Write (1) as an equation in z. We get
rly-— x(?y—l)—f—l(}y 1=0, (2)
which is a quadratic equation unless =0,
The roots of this equation are not real (Theorem 10) whén

(Ty—1P—4y(10y—1) <0, RO N
ie., when 9y°—10y+1 < 0, O _
i.e., when (Oy~){y—1) < 0. N {3)

This is the case when } < y < 1, for then the first, factor in
(3) is positive and the second is negatives <\ :
Hence there is no real value of z corresponding to a value
- of y that lies between 3 and 1. Thersfare no part of the graph
can lie between the lines y = 1 and\y = 1.

Examrre 3 (Harder). Pm?;e»tkat  is real for every real value

of y if :
—H’)
g -—“ YT (a, b real)
nid a® > b2,
and o M\ \

SoLuTionN. W%h ¥ = 0,2 = —bja and is rea,l
¥ 5 0, x satisfies the quadratic equation

yx —ax-—(_;—fwb) = 0.
Hence w'm{reaal if

\}.’ a?4-dy(y b} >
ie.GF 4y - dby+a? = 0 (1)
\ But (1) may be written as _ '
o) (2y-+b)2aP—b* > o,
which is satisfied for all real values of Y when a? 2= b2, and
80 x i3 real.

Aliter. We can replace the argument after (1) above by the
following, By Theorem 11

4yt dby--a® > 0
for all real values of y, if b2 << a%. Further, when a? = 52, the
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teft-hand side of (1) is equal o (2b+y)?, which is positive or
zero when y is real. Hence (1) is satisfied if ¢® = b2

4.3. Nore. Most of the examples in which = is to be proved real
whenever y is real involve an appesl t¢ Theorerm 11. But it is often
possiblo, as in the first proof of Example 3 above, to get the facts by
‘completing the sguare’. All Thecrem 11 does is to state in formal
terms the results that will follow from considering

2 o By

ax?42bx-+c in the form al(x —l—%) + %!3-}, N

and when we are working with particular values of a, b, ¢, it iSOQ&Qn
easier to eomplete the square than it is to appeal to Theorem Jd,

N/

Exampres IX a N
Sketch the graphs of the following: W
1 ANV
1. y—lmg, _|_1...__3’
] .
2 Y= mimT ¥ Ems
5 = \J/ #ttrl
’ y_m“—l—l’ g.' ¥ = B
z—1 ON° _ 2z—1
£, :——"__2: ’.:'o y_zx____g'
5 _ £2EL _
. y—('x:_i'j%)x__3)9 y_m""'—l-
6 w3 =
A S D162’ Y= e DiE—2)
N et a2
AR = x2+1’ Y= gl
:"\"~ .
% Examrres IX 8

1«’?1'0“3 that two distinet real values of x correspond to every real
A(all}.e of y other than zero

\ 4 r—3 .. r—2
{i} when ¥ = oy L (ii) when ¥ = e r—i
2. (i} Prove that no part of the graph of
y = wflz—1)}z—41)
lies betweon the lines ¥ = —4and y = —1.
(ii) Prove that no part of the graph of
y — (@—1)j(z*+32)

lies between the linss y = and y = 1.
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3. (i) Prove that no part of the graph of
y = (x—3)f(x—2)*
lies above the line 4 = §.
(ii) Prove that no part of the graph of
¥ = (E—Hf{z—1)

lies above the line y = .

4, Prove that x is real for every real valus of y if

x+1 *
_ Y= gt b \<\
and 5 3 at, <
o
5. Prove that no part of the graph of \ >
al N
_ 20@+1) AN 3
25aF— 16 R 4%
lies between the lines ¥y = —1 and ¥ = —1. \ D
»
7
‘€%
&
R
«3;‘



CHAPTER X
THE BINOMIAL THEOREM FOR ANY INDEX

1. The introduction of infinite series

1.1. If we were set the elementary problem of dividing 1—a®
by 1—z and expressing the quotient in a series of ascending
powers of 2 we should proceed, using the ordinary long division ~_
process, as follows:

: KoY
1—2)1 —gi(lafat bttt S N
1—2 L
@ L)
r—at . '\\
.—w_2 é ’}
2 —a? \
- Koo
g3t \ ’
m4—a:5
ats ot

The long division terminatej&;'.ﬁhen we arrive at the stage at
which there is no remaindor: this happens when we bring down
the term in %5, ,i*,\ .

If now we start tbdivide 1 by 1—x and express the guotient
in a series of asdending powers of z, there is no term to bring
down and theddng-division process will go on for ever. The
guotient w@fﬂd appear to be

A’%"‘ 14+ a-a ... ad infinitum. (1)
.We.&nay therefore ask ourselves whether there is any way of
“iqterpreting the series {1) so that the result makes sense. The
\réader will see for himself that simply to say ‘Take 1, add =,
add 22, add #®, and go on like this for ever’ is just nonsense.
If we are to give (1) & meaning at all, that meaning must be
" expressed by moans of a property belonging to the sum of a
finite number of the terms of (1): we can find the sum of a finite
number of things and we cannot give a precise meaning to
‘adding up an infinite number of things’.
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Now the sum of » terms of (1) is
1+ata2--... fxnl, ' (2)

I—a"
l—z

which is equal to

»

or, as we write it with a view to our next step,
1 "
e 3
1—x 1—x ."(\)
1.2, A convergent series. Suppose first that o £ 0y bt has
a value lying between —1 and --1. Then the nﬁmber sl
approaches zero as n increases; the fo]lowmg tafbrle will iflus-
trate this.t

@ 210 230 30 v w}cmn
0-1 10—1'0 10—-20 O‘—Bﬂ . :10—100
05  10°® 10~ 102N 8. 107
09 035 012 o  0-00008
Thus, in the expression (3) of §1:1,}
xﬂ' A N/
b‘_.'_n._
R J—=z

approaches zero as n incfeases, and so

i A ' I
= 15 —=\, Yapproaches the value i—"
This shows that\he gum of the first » terms of the infinite series
X \, \J 1+-z-4-a24... ad infinitum {4)

appro&chés /the value 1/(1—=x) as n increases. In this sense we
u"Be‘ the infinite series (4) to represent 1/(1—=z), and we

Wl‘lth 1

N _ == 14-x+4a... ad inf.

...\’ 3 1

) “We say that the series ‘converges to 1/(1—z)’ and we call the

series ‘a convergent series’.

1.3. A series that does not converge. Suppose next that z > 1

“or that x < —1; for example 2 = 2 or x = —10. Then the

numerical value of 2" increases beyond all bounds as » increases;
the tahle on p. 127 will illustrate this.

t Bome of the values given are rough approximations only.
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x %10 P o0 2100
2 108 10¢ 16°  10° (approx.)
J— 10 1010 1020 1030 10100
The more we increase %, the more the value of 1+, J-a"-1,
that is, of 1 "
1—z 1 2’

differs from 1/(1—x). The sum of the first = terms of the

-infinite sefies 1+a+22+... ad inf.
does not approach the value of 1/{1—z}. We cannot use t}l&
series to represent the function 1/(1—=z). O

i4. Summary. When —! <<z <1 and = ;é 0, the sum of
n terms of the series
_ 1tazdx2+... ad inf.
~‘approaches the value 1/(1—=z), and in this sQn,se we may write
' I i 14-atatt. q,cL\znf (5)

When x = 0, the series 1—1—0~{—‘O'—t—..... to n terms has the sum
1 for all values of n; the value ef} /(1—a) is also 1: the two are
equal. We can legltlmately «dge {5) when & = 0; but there is,
of course, not much po intNn so doing, and we mention the
matter here chiefly to gkow what happens when the value x = 0,
which we excluded Ihﬂe\nously, is taken into account.

When 2 < —3'of when = > 1 we cannot legitimately use
equation (5); for then the sum of » terms of 1-4x4-2%4... does
not appro'a{&h\"/ (1—z).

2 Furﬂ}er examples of infinite series

2 { “The square root of 14z The elementary process of
@lﬁmg the square root of I+ gives, as its first few steps,
1] 14a(l+r—a® 5+
1
2+4+4x | =

-t

94— Ja?| —fa?
— ottt
Q4+ z—JoP Ra®|  Fad—gpt

~\
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The process goes on for ever, and it suggests, in the light of -
§ 1, that, for some values of x at any rate, (14+a)* can be repre-
sented by the infinite series

14 jo—fat4-fa®—.... (1)

The law governing the formation of the coefficients is not

easy to see from this way of getting at the series. But if we

look at (1) in relation to the binomial theorem {as we proved
it in Chapter VI), we see the law without any difficulty. £\

When n is a positive integer we know that (Chapter® VI, .
Theorem 16, Note 4) N,

(142)* =14ne 4 n(n2T e + mn— ;)I(nig);q;;;}- vt

Let ug put n = %'in the geries on the right.“‘il‘l\xen

(e MR

2’ 2! ~\2 8
o Dn—-2)  HoH(—9 _ 1
3! 3.2 T8

These are the numbers givefr,i"&é the coefficients of x, 22, and 23 /
by the square-root process. It is indicated that i
(1+2)} is represented by 1+Ja-+ %l—)xz—]-... .
A\ ]
the series continuing ad infinitum.

N/ .
2.2. The)series for (1—z)-1. Again, let ns test what happens
wheﬁ*ivé'put #t = —1 and —=z for x in the series
"\

O T o TR
\”\} ~\W'e get .
1—(—2)+ (_'_%).{2__2%2 _ _(_7_1)3(_.—22)1(;3)33 $on

= 14-ax2Lx%4.... (3)
That is to say. the series (3) is given by using the binomial
expansion (2) with » = —1 and with —z for »; and it repre-
seats (l—z) ! when —1 « g = 1,
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2.3. Thus we have discovered two examples, one with n = }
(a fraction) and one with » = —1 (a megative number), in
which the infinite series ' -

n(n—1)n—
3l

1+nx—}-n(n271)x3+ 2);1:3-]—...
represents the fimetion (1-+x)*.

Other examples are readily obtained,} though more than a
modicum of patience is required to make the calculations
beyond the first few terms. There is no point in multip}y\i}ﬁg
the number of examples. a 3

All the examples are particular cases of a general théorem,
which is of the first importance in mathematical/work. We
shall give a formal statement of this theorem: )

N\

A,
THEO‘ 22, THE BINOMIAL THEOREM. Bt 7 be any number,
positive or megalive, inlegral or fmctg'@'?fs}l. Then the funclion
(1+x)y* is represenied by the binomigl séries

n(nle)xe+_..+??tﬂ:L1)..;(19?.—?-{-1):6’__1_.“

whenever —1 < <. 1.

14-nx-

A\

O
' NOTES ON THE THEOREM.

Nore 1. When W is a positive infeger the series terminates
(as in Theorg’]i:r 16) and its suny is (1f2)* for all values of .

NOTNZ\’When n is nob a positive integer (or zero) the series
is an ijdhnite geries and it represents the function (1--)2 when
—-:1\'%'&: < 17 for other values of x it does not, save in Some

\"TT'Er"y special cages, represent the function.

Note 3. When = is a fraction, say = == pjg, where p is an
integer (positive or negative) and ¢ is & positive integer, the

1 The reader who has the curiosity to see for himeelf should try
: i 1 1 v . 4
{z) by long division, el 1+ 223t -+ dat 4.y
{b) by square root, .
(142 = J1+32+ 32 +a%) = L3zt ie®— ha® 4o

4868 k4
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func‘mon represented by the bmom;:a,l series is ‘the positive qth
root of (14+)#°, For example, :

g M D HE UGB
represents +-./{1-+x) and

5(5__
1454 ém—lzxzﬁ—...

~ represents +4/(1-+x)5. \

Nore 4. We stress again the sense in which we must m‘terpret

~ the equation « M

When 7 is not a positive mteger.

n(n 1) "

(12 = 1z

22, admf (—j—jé:ﬁ(l)
A\

The equation means, not that we gan® add up an infinite

© number of terms, but that the sun;g_siéf'M terms of the series

on the right approaches the valueX(}4-z)" as M increases,
The series is often called the EXPawston of (1+z)™.

2.4. The proof of Theoreim®22, A proof of Theorem 22 is
beyond the range of thisBook ; it requires a knowledge of the
general theory of infifitée series, and in this book we do not
intend to go into £K8)details of this subject. :

The reader ca?]a\use the infinite series with complete con-
fidence prowdezd always that he remembers the essential point

stressed in'Wote 4 above.
".\

3. 'l@ipl’ications of the binomial theorem

18.1. The general term. By the theorem, the coefficient of "

(h.the expansion of (1-}-w)» is
4

n(n—1)n—2)..(n—ri- 1)
. ¥l

This form of the coefficient is often capable of considerable

_reduction. We work out a fow examples,

Examerr 1. To find the coeﬁczmt of 2" in the expansion of
(141,
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The coefficient of «7 is ‘
(—1)(=2)(=1~r41) _ (=1)(—2){=7)

7! r!

‘There are r factors in the numerator, and so the coefficient 1s

L bh2.r .
| (—1y. 22l = (1
Thus, when —1 < & <1,
(A+42)?! =1—gtaf—. .+ (—1)2+..., N\
and (1—z)t = tata? .42+ O\
- Exampire 2. To find the coefficient of 37 wn the ezpaj@‘ééoﬁ of
(14+x}2. _ ' \,u.’%
. The coefficient of &7 is ' ,\"\'f
(—D(—=3).(—2—r+1) | 2.3 (r+1)
. (2o ST
ri ) ’\\'; 1.2...7
| - = (UL
Thus, when —1 < & <1,

(142) 3 = 1— 2o 3223 T (— 1 (- o7
and  (l—a)? = 1+ 2o 3% .- (r - Do+
Examere 3. To ﬁnd“t?ie’:éueﬁioient of a* in the expansion of
{1—z)2, O '
The term in x"ﬁig("'

o[t Nl St O
r.

AN/
> 1.3.5...(2r—1)
pin & Y 2" bbb b —1v¥=z
N R YEIE W
R\ 1.3.5..(Fr—1) ,
AN _ L
w\:”; _ 2.4.6...2r
N\ "Thus, when —l<z <],

1. 1.3 1.3..(2r—1) ,
—p)t 3 g . Y.
e (LI G W
3.2. Functions like (2+4x)", (L-+32)" o _
(i) In Theorem 22 it is (1-fw)" that is in question and in
~ order to be able to apply the theorem to the expansion of
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(24 2)" we must ﬁ:st write thaf function in the form 27(1-}-1x)®, |
We then get

(24-z)m = 2%(1 —l—%ﬂ?)”
= 2“{1—{- i n(?y ’-—!) & R admf}
the coefficient of 2™ in this being

n(n—l)...(n—r—i— 1}2n_r (N
7! )

L\
Moreover, we can use Theorem 22 to represent (-1 by
the infinite series whenever —1 << o <C1; that zs whenever
| —2 « x < 2. As a particular case, we note s

11 1 o
21z)  2(i11z) é( ‘{\’i' 22“3 )
(ii) When we use Theorem 22 tNepresent (1—{—33:)“ by an
infinite series, we get O

(1-+32)" = 1+n. 3m+”{” Vseeo i .. ad inf.,

the equality sign being® ]ustlﬁed when —1 < 3z < 1; that is,
when —} <o < é‘\

\\
3.3 Rafwml Sfunctions represented by infinite series.
E‘, ]&’LE 1. Find the expansion of

itz
(I—2z)(1—x)

ascending powers of x, giving the first few terms Of
the general term. For what values of x does the

N
\N\; “in o series
the series o
resulf hold ?

SoLuTioN, B

he method of partial fractions we find (the
details are left to

e reader)

6 3 2 :
e I e — — —ar— 1
(1—22)(1F)2~ 1-2z 1—x (1—=z)* "
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By the Binomial Theorem,
6(1—22)~t = 6{1 4 2+ P+ 4+ 2,
31 —z)t = B{l+atait.. a4,
YL a)? = 2{1—1—2x—|—3x2+...—1—(r+1}x'+...}.
Thus (1) is equal to

1+5x+15x_2+...—]—(6.2’—3_——2?’—2)1:’—1—... O\
— 145z 1528+ .+ (6.2 — 2r—B)2"+ .. O (2)

The series for (1—2x)~! holds good when —1 < 2 <1, ie.
when —1 <¢ @ < }; the series for 1—=x)? au,ntlg«(f}\—x)-'2 hold
good when —1< z< 1. Hence the seriesN2) holds when
—i<z<} 7.\

" N

34, Aj)pmximions. When — 1’< « < 1, the sum of 7 terms
of the series oL i“ _ _
1+m.h?’.;(’%—lx2+... (1)

approaches, as 7 increases, the value of (14x)”. The series (1)
therefore provideg ug'with a means of approximating to that
value. In general)ythe larger number of terms we take, the
closer is the approximation. :

There q{;\e\:\:{;ﬁvo main types of approximation for which the
seTies c‘a@;b’e used: '

(A) \numerical approximations, such as finding the value of

L0 (1-1)% correct to 4 significant figures;

{B). approximations correct to a given power of z, such as
finding an approximation for (14 4x)~F correct to terms
in a2,

 Of these (A) ie straightforward numerical caleulation of the
type considered in Chapter VI, § 5.2; and (B) is based on the
- ideas explained in Chapter VI, §5.5. We shall work one
example of each kind.
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. Exampre 1. Find (1:1)73 correct t0 3 significant figures.
* SoLUTION. Since 0-1 lies between —1 and -1, '
(11} = (4"

_ (—3)(—4) 1 (—4H(—=5) 1
=13 “""—'“’“— 102+"— 3.2 108
(— N=H(=5)(—6) 1
it
4.3.2 ot
3 6 1 15 21 RN
T T (s TS T ©
C+10 —0-3
0-06 001 LA
0-0015 0-0002( ¢
1-0615 0-310%
03102 07\
07513 \

A

The value to 3 sxgmhcant ﬁgyres is 0-751.

- ExampiE 2. Find the ,@mpanswn of
N1
~\ 1+4z-ta?
correct to terms a<s\.c3'
Sor.tr*rxoy.,(gj_. By the Binomial Theorem,

A\
Y A+t =1—y+y*—4+...,
and, g0;'0n writing y = z+2* = z{1+2),
ko 28) 8 = 1L o) a1 2) (L2
) \“\, Neglecting terms in a4, a?,..., we have?t
\/ (14-z422)1 =1 —z—a2tad(l4-2a)—ad.1
' ' = 1—x}z8,
T Notice that we write x%14-2z)? = 3213 2z 2%)
as L o142,
We omit the term that would lead t6 an at,
Again, we write 23 1-4+x2)® = w3{1+3x+3x5’+z3)

as ) R
We omit the terms that would Ieia-.\d to 24, %, or 28,
' N
3
N

-1
! o Cey

)
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SoLurToN (b).

1 l—.x : '
—_— i T —— —_— —_ -1
iers = T2 (1—a){I—a%) 1,

On using the expansion
(—y)t = Lhy+yit
with y = 2%, and omitting all powers of z higher than the third,

1 ' :
et e (121 ba®) = 1 et
g = () =1t
: ,\:\’
4, Particular expansions O

Some applications of the binomial theorem are g0l ’frequent
that it is worth while to remember the expansmn\m ’the form
it takes after the coefficients have been expressédin the mmplest
manner possible. Notable examples are Y,

(1—2)* = 1+a+a"+... \‘
(1—z)? = 12z 3224 —L(?—}—l)x"—l—
It is certainly worth while fo bé, Sble to write these down )

without having to work them out” from Theorem 22.
Other series that one shmi}d *ve able to recognize when they

00(}111' &re . "’\l
OV, | L3.(2—1),
—x) = ——er 2 a
()™ =1 %+2.4x todt g ST
o~ 1 1 A{2r—3)
EPNON 7 R YRR SOV B, £ . fews. 0/
(I—2pisl—go 2.433 549

s
(ere = 1304 25 e +("+1)-(’i2—)x'+....

It 18~Iiot worth while to learn these thoroughly unless one has
\Qhe “fair for memorizing such things easily and, above all,
accurately.

ExamrLEs X

1. Find the expsnsions of
B A—a iy (14}
giving the first 4 torms and the general term of each exXpansion.
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2. ¥ind the coefficients of «? and of #* in the expansions of
@ Qd2eyt () Q3

and find, in their simmplest forms, cxpressions for the coefficients of zk
in these oxpansions. For what velues of x is each expansion valid ?

3. Find tlie coefficient of 2" in the expansion of

21
(i) (i) T

x
(i
4. The functions
-
are expanded in a series of ascending powers of . Find the ﬁ.‘ratgﬁxif-rms
and the general term of each expansion. N

5. Find the coefficicnt of z7 in the expansion of N
G) (4@, - (i) (2+30, (i), ({3 22y,

.

For what vaelaes of x is each expansion valid ?

6. Find the first 3 terms and the general W in the expension of

(1) (if) (3—=z)2

6 e o T
(2 +-=v) (2 X,
and state the range of values of fqr which the expansion holds good.

In each of the examples 79, find the expansion of the function in

a series of ascending powers" of #, giving the first 3 terms and the

general term. State the values of  for which the expansion is valid.

- In each example first bxpross the given rational function as & sum
of partial fractionsy a:n,\d'then use the binomial theorem (wide § 3.3).

\\ 1 5 1

T Wog—ai—zy W Grmarmy
,U. } P .. 2w
O e @
Z:\“ . ) . N x?

?:\ W Gepr W) = 8z)"

~ 10 Find to 3 mgmﬁca.nt figures the values of

W (i) (1-0%)*, Gi) (1-05)-%
Use the method) of § 3.4, Example 1, and check your answer against
the result as given by the use of four-figure tables of logarithms.

11. Find to 4 sigrificant figures the values of

{i)-. (9-99)-¢, (i} (99-99)%.
. N 1345 118
NoTE. {9-99)-8 (10_ -102) _10-6(1__6.3) .
\
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Check your result against the answer given by the use of four-figure
tables of logarithma. :

12. Find the expansion correct to terms in «? of

S o 1
W 15 ) T
13. Find the expansion correct to terms in 23 of
@) (14etat4az2s, i) (1422)3(14-32)
14. (Harder.) Find the expansion eorrect to terms in x® of N\
() (248277, (i) (442043t e
A\
15. Prove thai, when z is small, \ \/
1 l“."

R\
== 14, JAA4z) = 1+ 4, '\:,,

(E43z)t=1-uzx, (1+2x)‘a1+3‘£>\

16, In the expansion of el '—'x)_3+b(l+x)_1:,uﬂi§ coefficient of 28 is
18 and the coefficient of x7 is 12, Find the ‘{@és of @ and &.

17. afl+2)+b(1 +)pte(l ) == 54+ @>%)7, the approximation
being correet to terms in 2% Find thp»ﬂrg.lues of @, b, &
N

18, (Harder.} The expansion gr‘ajs}i'endmg powers of x of
. a b ¢
1-{¢(1-—x]2+(1—~x)3
begins with the terrn d\g®, there being no constant term and the
coefficient of = being\ém. Prove that the coefficient of z* in the
expansion is §r(r—1).»
"/



CHAPTER XI
THE EXPONENTIAL AND LOGARITEMIC FUNCTIONS

Introduction :
The use of infinite series introduces functions that do not
belong to the study of algebra. Bub the more important of
these functions are closely related to algebra and it is usual to
give some account of them in an algebra book, These funciions
‘are the exponential function and the logarithmic functiony they
are used in almost every branch of mathematics. | O :
To discuss the functions adequately a fairly eftensive know-

ledge of the theory of infinite series is necessary. Here we shall |
attempt no more than a sketch of one of\the many possible
ways of introducing the functions. )

O.'
-

1. The exponential function x\
'1.1. In general, when y is a function of . the differential
coefficient dy/dz is not identitally equal to y. For example,
when, y: x, j'_i = 322;
. : AN
and 822 is not i{é{iﬁc&lly equal to x°.

The partichlar function y whose differential coefficient is
identically ggifal to y is found to be vepresented by the infinite
series: s\ L2 48 -

’\\ y=1+x+§i+§+---ﬂ—a+.... (1}

|

' '.jjszssuming (what can in fact be proved) that the differential

oy
%
\ }

(coefficient is given correctly by differentiating each term of the

series separately, we have

dy ) a? o ognt : | 9
= 0+1 Fx+‘2-1+---_+m+-"- (2)

Since the series in (1) and (2) are the same,

.ty
=3
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The value of (1) when x=11s
1+1+2,+3,+ 3

The sum of the first n terms of this series approaches & certain
definite value as n increases. This definite value is denoted
by e. The numerical value is approximatelyt 2-7183, which is
obtained by taking the first 9 terms of the series (3). ~
“The series (1) above can be proved (by the theory of inﬁni:te

series) 1;0 be equal to %, so that ¢(\H
NS ©

e = 1+1+ 1 , PR €

and S A +x— o) (5)

Before proceedmg farther we stress the/ meaning to be
attached to the equation (5). It Ineans\thab for any given
value of z, x’n
e Gt b
approaches the value (e)® as %~ Hlereases. Unlike the binomial
theorem, THIS IS TRUE FOR AT VALUES OF .

1.2. The reader shouhsl be prepared to recognize this series
when z is replaced b{\s‘_[mple functions of z, such as —a? or 3.
For example, () :

eI l—x+ 7 -J]—.,.—|—(_—1)""-aﬂ+
O 2
O (993)“

+oes

ad

A ezﬁ=1+2x+ +3,+ 4
mi'i.." ) __xl___ _ 2 _.__._._. -_1
O e 1—x —{— -i— A ) |
Again, the theory of infinite series _proves that we can add
or subtract such series when they are convergent, and examples.

of this are of common occurrence. For example,
) 22 28
X 3 . . e
2 =
= Itetgtgt = 1wt =gy
1 The value has been ealeulated to an enortnous number of pleces of deci-
mais ; the first 10 places give 2 7182818285, 1 is not & recurring decimal.
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" By addition and division by 2,

'”\

\ }

221.

et te ) = 1+ +4I+ oWy (2n)l
whﬂe, by subtraction and division by 2,

x2ﬂ +1

ef—e ) =%
-3 ) = + i+ TS BY @n +1),
. N
2. The logarithmic function :
2.1. In numerical calculations logarithms are usua]lys“ﬁaken
to the base 10. In theoretical work logarithms are.. Jaken to
the bage e. & '«.
We assume that the reader is familiar with th .facts briefly out-
lined in what follows. Let logarithms be taken “bo Jany base a. Let

z=e% y=an (1)
Then logz = =n, log é;)@
From (1}, xy = at.a™ X t}.}‘*'m

x{’y — an,_,am bt an—m
) ak = jf&”}k — q®k,
Hence log(zxy} -—-\.ﬂ~]‘-m = logz+logy,
Iog(:rfy} =n-—m = logz—logy,
log{ﬁ) =nk = kloga.
- Let # be any \R&sutlve number, and let log,x = y; so that
z = ¢v. For cghyenience of writing, let us take the saffix e to
be understogd as the base of all logarithms that occur hereafter.
Wlth thig¢onvention,

\:\‘ loge =y, a == e?, . (1)
A 3,y the fundamental property used in §1.1, '
% @) — o
“_Hence %(x] = 6’zil(eﬂ) :.e?-fg—z;
that is, l = xj—z, and so % :é.
Thus d-%(log x) = é | (2)
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Hence f % = logz--C,

and, since e®* =1 and so log1 = 0,

!
f % = logt—log1=logt. (3)
1

The equations (2) and (3} embody two important properties

of logarithms to the base e. In fact, one method of developing \

the theory takes {3) as the deﬁnition of log £. O\
O

2, 2 The series representing log(l4x). We first chamge ‘the
form of (3) by means of the substitutions

z =1ty t =14z
Wheng =1,y = 0and whenx ={,y = z;\thus (3) becomes

...\ v

7

dy )
f Ty 10g(1-{,~z}.,~

When z lies between —1 and + },,the values of y in the range
of integration also lie in this range and

&

1 3
1o +y w\l y+y =
Thus log(L4s) = f (1—y+y*—y°+...) dy.

_ PN 0

Assummg twhat can in fact be proved by the theory of
infinite ser{es) ‘that the integral is given correctly by integrating
each tem:l\sepa,mbeiy + we have

AN
Tog-2) = 2242 .

\ )

Thus (changing the variable from z to z), when —1 < z < 1,
2
log(1{z) = x_%+%3—... (4)

1 A method that avoids the use of infinite series is given in W. L, Perrar,
A Text-book of Convergence {Oxford, 1938), p. 103, It is elernentary in scope,
but i= rather ‘{ricky’ for the beginner,
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Further,} THE RESULT REMAINS TRUE WHEN & = -1, 50 that

{4} is true when —l <z <L Itis riot; true when = = —1,

As x approaches the value —1, 14z approaches 0; log(l+z)

is then negative and its numerical magnitude increases heyond

all bounds (it tends to ‘minus infinity’).

To sum up,
- 22 a3 ‘ .
10g(1+x}:x—-5-+73-—... (~1<<a<x1), - (B
S o O\
the general term of the series being .
. ) R ¢\
(—1nmni, N
i N

N :

\‘

This series is called the LOGARITHMIC SERIES.S, )
. ' . (&
2.3. As with the expansions of other fametions, we must be
able to recognize the series when # is replaeed by simple func-
tions of x, such as —x or 2%, We notaeﬁeépecia,lly

...T“;;($+§_|__+
which is valid when 7-1’;<H z <1
Further, any tw;g}such geries can be added or subtracted;

7

for example, N

..,i:.log(l +z) = x__%f_{_ a?

AN/ 3
O .
\\ tog(l1—a) = —-x—:—v—-—f—...,
O . 2 3
N
T
"gnd 80 log = log(1+x)—log(1——x)
3 8
3 ' 5

2.4. Expansion of log(2+-2) and similar expansions. In using
(5) we must remember that it is 1-}-z that is in question. To
1 The proof of this dopands on & theorem about power series thet lios out-

side the sdope of this book. The result is proved (in & different way) in
A Teat-book of Convergence, loe, ¢it.
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deal with 24-» we write it as 2(1+ z). Thus
- log(24-2) = log{2(1+ =)}
= log 2--log(1+ 32}

3 1,3
= log 2-|-%:t:—‘%i é%—-...,

the coefficient of 2 being (—1)*t1/n, 27,
2.5. Worked examgples.

Exawrere 1. Bapand log(1—3x+22%) in @ series of ascending
powers of w. What is the general term of the series and for uﬁat
velues of & is the expansion valid ?

SoLUTION. 1—8x+22? = (l—x)(l—zx).
. log(l—3x2+422% = log(l—z)+log(1—2x),

log(1—z) = (w—l-xz—i- + +§v+ )
'log.(l.—2x) (2:r:+ + + +2ﬂxﬂ )
on +1

o"'
& ™

at & i
A\

s log{l—3x+22%) = —(3x+«—+3x3+ T gy )
The series for log{l—xz)d8 valid when —1 <z <1 and the
series for log(I_Zx) ig'valid when —1<« 2x <1, i.e. when
—_% Sw<d Hence\i)le series obtained is valid when
, P < '
ExamPLE E\Fmd the expanmon of log(1-+2z--322) correct to
terms in &NV

SOLp:;'I}JN. [The quadratic 1-{-2z¢--32% has no real factors

and-we cannot follow the method of Example 1.]
\M[‘Iée the expangion

log(1-++y) = y— 4y 4 — Lo+
w1th ¥y = 2u4-32? = x(21-3z). We get
log(14- 22+ 3a%) = 2(2--32)— J2?(2+ 3xj2—§—
RSP — Lt (24 38
== Q- Ba?— fa¥(4+ 122+ 9x2) -+
+§a?(8 4 36z) — Jt. 16,

Q.



14¢ THE EXPONENTIAL AND LOGARITHMIC 'FUN_CTIONS
on neglecting all terms that would involve powers of 2 higher .
than the fourth. This gives .
log(1+4 224 32?) === 2o+ 2 — YTt
Exampre 3. Fopond
(1—x)og{l—x) _
in a series of ascending powers of x, giving the first three terms
and the term involving =™,

N
SOLUTION. )
log(l—2) = —(@+{a+H42°+.), LD
xlog(l__x) = —(22-}Las4- ). ”:}‘ \W/
5o (I—a)log(l—2) = —z+(1—§)e+ (Frade®+...
— iRl

The coefficient of 2* in this expansion IR '
1 1 n—(n— 1) 1

2—1 n  mn— NS, n(n—l)’
a,nd the term involving a® is x“jn(‘n 1).

X E%;{M_PLES XTa
1. Find the first 4 tgni;:ls in the expansion of

)
.\ (I x}i’
in a series of ascendmg powers of x; and state the range of values of
for which ’gle \eéxpansion is valid.

Wﬁm down the expansions of ¢%, ¢~*, and ¢*. Prove that, '
correet o terms in 2?,
™ €T 27 3% o 21 La").
)

a \% T 21 | a—BE
\ } 3. Prove that & e ¢ + 1_1te
e ? gEL1 1

4. Prove that in the expa.nsion of {1+x)e® as a power series I @ the
coefficient of &® is (- 1)/{n".
5. Find the coefficient of z* in the expansion of
{I+x)er —({1—x)e "

(i) when n i3 even, (if) when » is odd. You may use the result of
Example 4. '
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6. Prove that, when —1 -2 & = 1,

logi-l-:-—m-i- 2+ :v5+

and deduce that, when u > 1,
w—1  lfu—13% 1fu—115
vy = 2 P
log(vu) = 273 u—{—l) e Tt
Prove that log (3411) == 0-100335.
7. Write down the series for ¢~ and ¢, and deduce that

35+g— (4ﬂ_|_ 2ﬂ}xﬂ
L =2— ex+2o + A ST
8. The funection 7
S — (1 —a){1—x2) 1 —a?)t M
is expanded in aseending powers of x in the form R ~N
a—f—bx+cx2—[—dx3+ex‘+ ' '\'\’

Prove that the first 5 coefficients a, b, ¢, d, e are all zero,

145

9. {i) Expand log(6—5z)—log 6 in & series of sstending powers of x.
g a5

For what values of 2 is the expansion valid '\ @

(if) Find the coefficiént of x® when log{l {{b‘ b+ o)} is expa.nded in
& series of ascending powers of x. For what selues of « is the expansion

valid ? & ™
- 10. Expand logi—Fz

in ascending powers of z, giving the first 3 terms and. the general term

of the expansion. For wha{tumlues of x is the expansion valid?

11 Expand 10g{1+%5m“) and log(l—,—5x+ 622} correct to terms in

. Hence prove that .

1+4x—|—5x L
E' S e~ A

correct to termein as.

12, Fm&he first 4 terms in the expansion of log{(1— xs) H1—x}}, and

prove that the coefficient of #*" in this expansion is —2/(3n),

U . Exampres XIB. HARDER EXAMPLES
1. Dotermine a and b so that the expansion of
+
115z ST Yop{14-)

may contain no term in «? or «? and show that with these values of

aendb l—i-bx

1 x 2 22?
I+ez . 2'3 9’
correct to terms in 23,
4368 ‘ 1,
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2. Show that, if z — 1-+af where ¢ is amall,
P
correct to terms in 2.
3. What logarithmic function is represented by the series
a¥ b
T + i + -5— + e ¥

Prove that, if this series represents f(z), then

2 &
” \
f(l—i—:c”) @) . '\
) ’\\..l'
4. What function is represented by the series & Q
2 ~
1+x +"”4 o ? Oy

.\(“}
O
N
&aNY
o8
oy »
\’g‘
{N\
%)
¢ &N
'mfw)
AN/
L)
¢ "4
"'\("
\Y4
X
™
PR Y
b Y



CHAPTER XII%
MATHEMATICAL INDUCTION

1. Introduction

_ 1.1. In this chapter we explain a method that is useful in
many parts of algebra. This is-the method of ‘proof by induec-
tion’. At first the method furnished both an instrument of ,
research to discover new theorems and a proof of the theorems
discovered : it also provided relatively simple proofs of theoremh
discovered by other means. The reader will probably vk the
method only as & means of proving results he is asked ‘to prove
and will rarely, if ever, be called upon to find out for himself
just what the theorem is before he tries to pro¥e)it. But it is
worth while to have some knowledge of how\the method can
be used to discover results and, in this infroductory section,
wo give some illustrations of the proqess,

)

1.2, A sum of cubes. N
ProBrEM. To find the sum qf” Phe ﬁrst 7 termas of the series
138281 304
SOLUTION AND EXPL@TION
The sum of I\oerm 18 13 =1,
the sum pf'\? terms is 13428 = 9,

the sum of 3 terms is  154+234-3% = 36.
If we logkfor any particular property of the numbers 1, 9, 38,
wo see dtonce that they are squares; in fact '

the sum of 1 term is 12,
\\ " the sum of 2 terms is 37
the sum of 3 terms ig 62,
the sum of 4 terms is 102,

Let us write down the numbers

1, 3, 6, 10, .... O
As they stand they suggest no immediate connexion with the
numbers 1,253 4. (2)
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but if we multiply the numbers in (1) by 2, we get
2, 6, 12, 20, .... (3)

We can now see that each number in (2) is a factor of the
corresponding number in (3}, and we write (3) as

1.2, 2.3, 3.4, 4.5, ... {4}
We have thus found out that
15 = (3.1.2),
13123 = (1.2.3)2, Q)
13+23+33 = (}.3.4)2, O\
[34 231381 4 (% 4. 5)2 ;\

It is suggested, but not of course yeb prot'ed that for every
positive integer n [4;
4281 g8 ”n(n+l)}2\ (5)
To complete this proof we may proceed as follows:
Let us suppose that, for some deﬁl:Qte value of 7,
P24 408 (- 1)P,
a supposition we know to be tuue when r =1, 2, 3, or 4.
Then, on this assumptlon' \
134234, +?‘3+{~?'"l‘ 1)3 = P+ 1724 (1)
= Hr-+ 140 1))
= Hr+1%r+2)°
which iy the R} H\S of (5} when n = r4-1. Thus, if (5) is true
when n = ¢ \It i also true when n — r+1. But we know that
(5) is true when n — 4; 1} 1s therefore true when » = 5. Again,
since (5}\13 true when n = 5, it is also true when n == 6; and

we may proceed thus to show that it is true when # is any
Dositive integer whatsoever,
\

m\

~1.3. Nore. The above is an introductory example, showing
how we may, from a study of the results for the first fow values
of n, guess the answer and then go on to prove it. The fore-
going work is not a model for doing later examples: see § 3.

1.4. ProsLEM. W hat numerical factor, if any, is common fo
all numbers B — fnd-4

when n is @ positive integer?
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SoLuTION.
Denote 6*—5n--4 by f(r). Then
f) = 6—5+4 =5,
f(2) = 36—10+4 = 30,
and it is suggested that 5 is always a factor of f(n).
Suppose then that, for a particular value of %, f(rn} = om,
where m is an integer. Then
fln4-1)—f(r) = 67— 67— 5(n+41)+5n
~ 6n(6—1)—5 = 5(6—1}. _{D
Hence fin4-1) = dm4-5(6"—1), >

S,
N

Q

7
4

which contains 5 ag & factor.

Thus, if f(») is divisible by 5 when n has”hny particular
value, f(n-+1) is also divisible by 5. Bub\f{I) and f(2} are
divisible by &, and so f(3) is divisible. Smbe' f(3) is divisible by
5, so also is f(4); and so on for all poglf)ve integers.

2. Formal statement R\
THE PRINCIPLE OF MATHEMAEEAL Inpuorion.
A mathematical formula %’?it;olving the positive integer n 13 true
Jor ALL positive mtegexs\pmmded that
{1) ¢f is true m@m n=1,

and (2) the kypet}beszs that it is true for any particular n i3 suffi-
cilenhdb/ensure that it is also true for n--1.

The p@lple is established thus: Suppose that a formula
satisfids the conditions (1) and (2). Then, by (2), if the formula
is tl‘lie for m, it is also true for n+1; so that,

\mce by (1), it is true when n = 1, it is also true when n = 2;
) since it is true when n — 2, it is also true when n = 3;
sinee it iz true when » = 3, it is also true when n = 4;
and so on for all values of #.

3. Worked examples
Exampre 1. Prove by induction that

134284 .03 = ind(n+1)%
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Proor. (1) The formula is true when n = 1, gince

13 =4.1%.22%
(2) Assume that, for ¢ particular value of =,
134234 .. 403 = In2(n-+1)2 (A)
Then
154934 +n3+(n 1P = Ln¥(n+1)2+(n+1)
— Hn+ 12+ 4nt 1)}
= {n+-1)%(n+2)%, .

that is BB A (n1)8 == Hn1)2(n]2)2,

This is the original formula (A} with »n-1-1 mteaﬂ‘ of n.
Henee, if (A} is true for », it is also true for n4-1,

But we have shown in (1) that the formula i‘s true when
» = 1, and therefore, by the principle of m@uctlon, it is true
for ALL positive integers ».

ExampLE 2. Prove by induction that; Jf n is a positive integer,

Jom+2_ Sn—\S
is divisible by 64.
Proor. Q)
(1) Let f(n) denote 35’““*&——8?:, 9. Then
HIr= 34—17 = 64.

(2) f(n+1)—~,f1‘%) = JW+_Q(nt 1)— 3424 8y

U =gmage_yy g
= §(3m+1_])
P4 = 8{(38)»+1_1),
Also,,~<2§" Zil—] = (F—1)@@" 144 1),
sofRat  9MH-l= g(Onon-li. 1),

. But wihave shovm in (1) tha,t f(l) is d1v131ble by 64, and

therefore, Dy

for all positivy integers .

Examrrz 3. %
P22 e? = In(n4-1)(2n41).

PrOO®., We sha A set out the proof of this result in a way
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that differs in its detail from the way used to prove Example 1.
The reader may teke his choice of the two ways when doing
examples for himself.
(1) The result is true when » == 1, since
_ 12==1.1.2.3,
(2} Let f(n) denote 3n(n-+1)(2n+1). Then
fnt1)—fm) = hn-+1)(nt-2)2n+3)—n(n+1)(20+1)

= Ln+1){2r*+Tn+6—2nP—n} S

N

= 3(n+1)(6n+6) e
= (n}-1)2 O
Hence, if the formula N

124224 4-2? = In(n+1)(2n+1) ~j{m
is true for a particular value of n, it follows that
124224 4 (a4 1)2 =f(n)jb@+1)2
= f(p-1),
by (A); i.e. the formula is also true fér the value n-+1.

But we have shown in (1) th.ab the formula is true when
# = 1, and therefore, by thgt. pr’inclple of induetion, it is true
for all positive integers =, “~
4, Proof by inductign}bf the binomial theorem

The binomial thégrem (cf. Theorem 186) states that, when n
is & positive integer,

{at+z)* = a’;*‘—iim“”lx—t— A O et T 4 L naxt ™ {A)

The thao’gem may be proved by induction thus:

(1), en n =1, the R.JLS. of (A) reduces simply to a-z,
and 86 the formula (A) is true when n =1.

N {2) Assume that (A) is true for a particular value of ». Then,

\on multiplying {(A) by a-+=,T
(a4-x)ttt = a*F-4-na"r+t-.. A a4 L axt

Lared.. Oy e et L2t
e @ (1) ek (OO e
L

t The first line gives the terms of (A} 1nultiplied by @, the second line gives
the terms of (A} multiplied by 2.
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7l nl

But nq'+n0r—1 = 7! (ﬂ—?‘}'+ (.r__[)j (n-——‘r—]—l)’

n!
= ?T(m (n—r-+147r)
At )
rl{nt+1—r)!
: = n1Cp

Hence, if (A) is true for a particular value of », it follows #hat

(@+2)" 1 = @ (e 1)ame . G @ e e,
that is, (A) is also true for the value 7 1. O

But we have shown in (1} that the formula (A)48 true when
n =1, and s0, by the principle of induction, .iﬁ:«is true for all
positive integers, %)

Exawvergs XII\\,

Prove by induetion the results in the f@l}@ééiz_lg examples:

1 1 1 n N\
+

T2t T aman Tl
1.242.34 . tnlnd-1) <%h{n+1)n|2).

8. 1434544 (2n— 1) ke

4, (Harder.) \"‘

ILER 25{:\,‘-;“5 = Znin+1)22n2 4 2n—1),

8. 72 —48n— s divisible by 2304 if » is a positive integer greater
than unity. Nt

Hirnr. The’:g?léthod of induction applies, though here the result (i),

of. the wotk: d examples, concerns » = 2 and the induction applies to
all n ;\waWhen n = 1, the given expression is zero.

1o

8, \(Harder.) 9"—8n—1 is divisible by 64 if n is a positive intoger
greater than unity.

<\§ “Hixz, 3°—1 and 3%-1-1 are consecutive even integers; or
(8" —1)3% 4 1) = 971,
which contains 8 as a factor.
7. (Harderl'.) 14424724 1 (Brn—2)% — Fn(6n?—3n—1). -
8. LRSS (2ne 1) — nfdni.). _

9. (Harder.) Prove that, if Po = 1 and p,, p,,.«. are positive nuinbers
such that o> PrPris (r =0, 1, 2,...), then Ty > pé - _‘p;‘;}... > plin,



CHAPTER XIJII
LINEAR EQUATIONS AND DETERMINANTS

1. Simultaneous eguations

1.1. Introduction. The two equations

24y =3
5x—dy = 1 } @)
can be solved for x and y; the solution s 2 =1, y =1, a,nd 1o
other pair of values will satisfy both equations. ¢\ \
; i O
The two equations Thy—z = 0 O I
Se4-3y—4z =0 “4 N )

" do not determine the actual values of x, ¥, z”&ﬁt only their
ratios. The two equations may be written as ’

r, ¥y x Yt
24 52 .;. 3\&:3 A
and when we solve these equations g for x/z and y/z we get
z 1 .:.’:éf 1
z 2’~,u Sz 9
ie. : 2y S =1:1:2.

If A is any number W’hatsoe\f er, the values

x\é:)l: y=2A z=2
satisfy the equations (II).

The equatlﬁhs: (I) are said to be non-homogeneous in the two
va;ma,bles»{vﬁnd y, since they contain numbers, namely 3 and 1,
on th \mght hand side; they have one solution and one only.

The equations (L1} are said to be homogeneous in the three
\w&h&b]e% x, 9, z, since each term is of the first degree and the

\Iiumbers on the right-hand side are both zeros. The equatlonh

are satisfied \::hen z y 2

_ i 12
i.e. when z = A,y == A, 2 = 2 and A is any number whatsoever.
In §1.2 we consider the same type of equation with literal
coefficients. -
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L2, Solution of two simultancous equations. Consider the
simultaneous eguations '

@ x+bytez =0, (D)
By -byyeyz = 0. (2)
| Multiply (1) by &, (2) by b,, and subtract; this gives
| _ (@ by—ay b)) = (b cy—by0y)z. (3)
Multiply (2) by a,, (1) by a,, and subtract; this gives
(@1 by—a,ba)y = —(a,c,—ay0,)z. A (4)
{ N\

N
%
\ )

Provided that no one of the expressions PR

@y by—ayb1, bycy—byey, @, c,—ay S, '
is zero, T we may combine (3) and (4) to givg the formula
x — Nz

—_— I e 5
byca—byey @y €Uty :.\\‘?iba_'uz by ©)
If A ig any number whatsoever, the values
= A(hyc3—by0y), . W= —A(e, eg—a,cy),
B= A{“;bz_% b,) (6)

satisfy (5). We now veﬁfji‘that these values satisfy the original
equations (1) and (2)
In the first placg;}
)‘[al{bxcaf%‘x\si)"'bl(al92_‘3261}‘];31(@152—“2 byl =0, (7)
the terms pgméelling in pairs, and so the values (6) satisfy
equation {17 also :
at?ié(bl Cy—by e} —byla, cy—a, er}FCaley by—ay by)] = 0, (8)
a:npiﬁo the values (6) satisfy equation (2). .

OO "Notx. It is often useful to be able to write down (5) or, what

is the same thing, {6) as the solution of the equations (1) and
(2). Notice earefully the way in which the denominators of (5)

T If the reader meets examples in which one of the denominafors in {6} is
zero, he should, for the present, put aside the formuls {5) and solve the equa-
tions @b initio; he will then obtain equations like (3) and {4), but with one
side zera, At a Iater stage he may learn how o interpret the formula {8} when
8 denominator iz zero,
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are obtained by ‘cross-multiplication’ on the pattern

bl\/cl : al><"1' b,
bz’/\c, a;c e

X
) 3 @y by
and the arrangement of the signst of the numerators,

2, Determinants of oerder two

The expressions (7) and (8) are examples of what are caliedh
‘determinants’, Such expressions oceur in all attempts tosolve
linear equations and a special notation has been m\{eéfbt?(\ o
enable us to deal with them., The expressions (7) and”(8) are
built up from the simpler expressions & c,—b, cl‘,"iz‘i Co—Ug Ly,
@,b,—a, b, that occur in (5). In turm, expressionms resembling
(7) and (8) can be used o build up expresgions in four letters
a, b, ¢, d and so on for expressions in five} six,... letters. We
begin by considering the very simplgs’t %ype of determinant.

The notation \%

H

i 63‘3.52
called a determinant, is qspglf to denote b, c,—by ¢y, and so for
other letters and suffixes.“¥For example,

74

x Yyl o\ : Lom| g
MR I s
i ~'~:28+5——~33 ‘-“1 | 4’:—1+12=13.
5 WO ’ -3 —1

N

I
3. Propérties of determinants of order two

We hote the following facts and properties chiefly as a pre-
'Réai‘é,ti_on for theorems concerning determinants of order three,
\m \for which similar facts and properties hold, but are not quite

+ Some writers use the eyelic order
biey—byeg, €y Iy — G165 a; by—ag by,

that iz, they write ¢, @;—Cg%; where we have written — (&, ¢ — @61}, arfd have
all the signs positive in the numerators. This ig right, of cpurse, but it often
leads to error when the student comes to deal with determinants of order
four; determinants are founded on the alternating signs, =+, - +. as we
have them in (8}, and ‘cyclic order’ has the grave fault that it sometimes
leads to correct results [as it doea in (5)) and sometimes to wrong resuits, as
it does wish four letters @, b, ¢, 4.
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so obvious and elementary. For the purposes of this section
we take a8 the standard determinant of order two

a, b
dy by

1. The determinant has two rows; a first row @y, b; and &
second row Gy, by. It has two columns; a first column a,, a, and
a second column by, ;. The individual letters, a,, a., by, b, are
sometimes called ‘ELEMENTS’, XN

II. The value of each of the determinants \\\
a, b a, ay \ O
@ by| by | N

18 Gy by—ayb,; that is, the value of the detgp:’@’é«;fﬁant i¢ wnaltered
if rows become columns and columns beconie rows.

III. The interchange of two colunndy or of two rows, in the
determinant multiplies the value gfthe determinant by —1. For

example, @ b _;.::5 '51 a
@ 5} by @y
Proor. The LH.8. =4, b,—ayb,
and the RHS= —(ayb;—a,b,) = ayby—ay b,

IV. if a deteﬂgu?mnt has two columns, or two rows, identical
its value is zer6 L™

Proor. f.[‘h}ga determinant

P a a
o X
hay%\\ita}r’ second column the same as its first. Its value is
R\ _ ab—ab =. 0.

. '"\. \ - .
V. If each element of one column, or row, 13 multiplied by a

\ Jactor K, the value of the determinant is thereby multiplied by K.

Proos. Ka, b|
Kag b, H—Kalbz—wKasbl
= Kla by—a, b)
=Kx|% b, ;
@ by

and so for the second column or either row.
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CorOLLARY T0 IV aND V. The value of the determinant

Kay o
Ko, a,

¥

in which the elements of one column are K times the corresponding
elements of the other colwmn, is zero; for, by V, it is K times the

determinant
I a4 &
10y @y

which, by 1V, is equal to zero. ) L\

V1. The value of a determinant is unaltered if to each Slement
of one column (or row) is added the same mulliple of the corre-
sponding element of another column (or yow); for ea'\dzizple,

e b — a;+kby by

Lay by Gyt kb, bzl::\\w’ .
@ b | tty }b;

@y by ae+5ff1:...bz+_5b1 ’

and s0 on.

Proor. We shall prove tha‘ﬁ )
@, b{) a, kb, by
azi:;b-z ay+-kby by
for all values of %, \'E\hu value of the second determinant is
(“1+kb;)&g;*:t“-2+kbz)b1 = a; by—ay by H (b by — by by)
7. ' ta, Byl
Z:\':“ = avl bz—.aabl - 1 a; b: \.
A
’Ifhé: proot for other additions is similar.
4 "\' @ . -
a \ ¥/
\/ NOTATION FOR APPLICATIONS OF VI. When we apply the
‘result VI to examples we use ry, 7, to denote the first and second
rows of the original determinant, and we use 7,, 7, to denote
the first and second rows of the new determinant obtained by
applying VI. To indicate that the second row (say) of the new
determinant is the original second row plus five times the
original first row we write
4 = ryt- 57y,
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and so for multiples other than 6. For example, we write

—30 19 |—30 19 .
91 —57 1 01 (ry = 73r),

the notation ry = ry+ 37, indicating that we get the second row
of the determinant on the right by adding to the original second
row three times the first row; or again,

| —15 70 l | —3 8!
: = (?‘1 - T1+?2)’
| 10 —62 10 —62 A

the notation r| = -7, indicating that we get the first row of

* the determinant on the right by adding the two r,ows of the

Q¥

determinant on the left.
When dealing with columns we use the lefber ¢ instead of r,
which indicates rows. For example, we @me

‘O
g :" N }bl = ¢;—Ca);

atxr =z
bty y

or again

b Bat3b b 5ai (e2 = c3—3¢5)-

P4\

~ \
\ ’ Examrres XIIT A

Find the va.lue&of the foliowing determinants:

iy 5T T —5 |1 2 2 -3
a\s g 3 i3 4| 19 -7
\f ‘ otz a x4+l 2P41
uif oy b+y b/ y+1 w41
o)) .4 —2 ]—1 -51 |23 3 -3 |
7 e 9 —6[ —2 2" ‘—1 e
Prove the following results by using properties II-VI of § 3.
- )59, l_ 19 42| |42 19
i6l —31 —31 17 41| 41 177
8. {19 19} 57 19 I m I n
15 15 =0, =0 i =
! 5 _ 45 15 ’ {n p m pl
6. 13z u] z u .,7 18 19 18
j 3y 1-‘[ lvsl |
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1. x ¥ |::cy| 101 151] |1 1
u4-6a  v+6y u vl 50 75| [50 757
Solve the following pairs of simultaneous equations, using (5) of § L.
8 3ztdytbz=0, 9. Tz-2y4+32=0,
xt+ytz =0 x4 Ty—dz = 0.
10, Tx—2y+32z=140, 11. 3z+dy+5z=0,
atyte= 0. 2z+Ty—dz = Q.
12. 152—14y+13z = 0, 13. 17z 16y—15z = 0, O
Yrx—By+ bz = 0. 35x+33y—31z = 0. A
€ N\
- Solve the simultaneous equations obtained by putting z£) in
Examples 8-13, e.g. g\
14, Sxtdy+5=0, 15. Tx—2+3 =0, /5
rty+1=0. 2o+ Ty—d =B\
16-19 derived similarly from 10-13.. i
7\
4, Determinants of order three x\
4.1. The notation A1
ty b’i~ 21
RS AR (1}
@y by ¢y

called a determinant {}f"fga\rder three, is used to denote
@y{byCs—DsCs ‘—b1(“2Cs—aacz)+c1(azbs“aabz): (2}

which may a@sc}:iié written as

D0, e
"\\j\a”l\] by ¢,

",Q"é‘met.hod of obtaining the determinants
\»\ ) by Ca
by ¢

which oceur in (3}, from the original determinant (1);must be
noted. They are obtained by deleting from (1) the first row in

' every case, and then deleting in turn from (1) the first, second,
third column respectively.

a, by
@y b3

a. C,
—b | P4 3
1 8y €4 1 { )

@y by
ay bg

Gy €y
a3 Cg

» Ll 1

- 4.2. Worked examples. Before proceeding further we give the



\‘;

1. |4 5 6.{“;\4—1.2 5 0 7
1 2 #+\ 0 7 8} 0 6 5|
0 1 £ 1 2 3 I —1 2
2. = Jm¥A ja y z
y’.\'g" 1], 2 & YL
’\?‘*z i ¥y z
-3}\ ar by «cx a b ¢
."\':'f' at oyt 2|, xr y z
1 1 1 Yz, oz zy
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reader some practice in writing down tlie value of & determinant
of order three.
6 6

7
3 2 4 2 4 3
vy 1 2
= 5(6—2)—6(8—14)-}-T(¢—21)
. = 204+36—119 = —43,
a b g
b f A f
B b f|l= kl +g |
g ¢ g f"
g I ¢
— a(bc—ﬁ)—}a(kc—fg)—kg(kf(ﬂvfgg)
= abet2fgh—af *—bg?— ch?) '
1 1 1 N
20 Zli_' Xy PN
oA Yo 2y Ty 2y fl\‘*"z Y2
Ty Y2 2 >

(3/1 Za—Ye 1)1 (z1 3’2&‘22 ®3)+ () Y2 =X 7))
[Notice that we revert to the tse of eyelic order when we
write the answer.]

Exambres X111 5

Find the values of the(following determinants:

4.3. Other'ways of expressing the value of a determinant. If we
collect the terms of (2) in a different way, this time collecting
all terms containing &,, then all terms containing a,, and then
all terms containing a,, we obtain an expansion of the deter-
minant (1) in the form i

ay{by 03—by €3} —ay(by €3—by '31}“!—@3(6 cz“bz 1)
which may also be written as
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b ¢
63 63 +a'3 - (4)

The determinants of order two that occur in (4) are obtained
from the original determinant

by ¢
by €

b, o

a
1
by ¢,

a b €
a by € (1)
_ @ by ¢
by deleting '
(i} the row and column containing a,, O\
(ii) the row and column containing «,, N

2 &

(iii) the row and column containing a,. PAY

Now -(4) works down the first column of (1);theé terms of
{4) being a, times something, minus a, time${dmething, plus
a, times something ; and so (4) is called TREEXPANSION OF THE
GIVEN DETERMINANT BY ITS FIRST COLUMN}

_In the same way (3), which was ()
by ¢ ay by
by cg ay by
works from the first Tow ag\b}, ¢, of (1); and so (3) is called
THE EXPANSION OF THE GIVEN DETERMINANT BY TTS FTRST ROW.
The determinant cafalso be expanded by its second or third
TOow, or by its sec&é;&'f:)r third column. But, for the pregent,
the reader will>be well advised to concentrate on the two
expansions (@){éxpa,nsion by the first row, and (4}, expansion by
~ the first qo.kiunn.
\WV ExamprEs XIII ¢

1..E'§pf;.nd_ the following deterininants by their first rows {do not
simplify the expansion by removing brackets) on the pattern of the
mg'x},mple:

_ Iy ’c? "‘1".01

; (3}

\ \ 1 2 3
a b c¢|={bn—cm)—2{an—dcl}+3{em—bi):

I m n
x Y =z x ¥y 2 a b ¢
I m n| a & cf, Jx ¥ %9
a & ¢ N i m n I m n
? oyt 2t 2t 2 1 2 o 1
@ ¥z ¥ oy Ll ¥ b my
1 1 1 2 z 1 2 ¢ n

4568 i - |
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2. Expend the six determinants of Example 1 by their first columng,

3. Prove that the following equa.tibns are true by expanding each

determinant separately:

ar x
by y
¢z =

ar by .

g¥ ?

1 1
z oy
a b
a®  pt

a
b
¢

Yz zx xY
1 1 19

be ea ab )

r ¥ =z

a b ¢ | )
be ca ab \
bex cay abz oA\

1 1 1 NS ©

a b ¢ G\

7N
< 3

5. Properties of determinants of order stéeT

The main properties are those given in’§$\3 for determinants
of order two, though in some instances.the statement for the
latter has to be generalized a little. Ve number the properties
in the same way as before and we take as our standard deter-
minant for the purposes of ouz proofs

o

2
&y
Gy

}’L ﬁ 1 01
by ¢
by ¢

When we wish ’go.x}éf\er to a determinant without writing it in

full we shall dendts it by A.

1. The degérﬁlina.nt has three rows and three columns; the
individua{letters @1, B;..., ¢ are called the ELEMENTS of A.

II Tke value of the determinant is unaltered if rows become
colsiatnis and columns become rows, That is,

+

Ny a b ¢ 4 Qy dy
N - .
\ 9, @ by o) =[b b, bg |,
: @y by ey ¢ € €5

an equality that is best proved (at this stage) by expanding the
one determinant by its first 10w, the other by its first column,
and seeing that the two expansions are the same.

{ Bome readers may prefor to o
the intending mathematician rather

mit § 5, the details of which appeal to
than

to the seientist, The latter may

profitably ‘read it over’, for the results are important.
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I11. The inferchange of any two columns, or of any two rows,
multiplies the value of the determinant by —1.

We may prove that

a, by ¢ te, by ay
ay by c|= —c; by Gy,
las by ¢ c; by 0y

in which the first and third columns are interchanged, by noting _
that, on expanding the determinants by their first rows, the

LHS. is ¢(\N
@y (by Ca— by €g)—by (@3 C3— 3 Ca) €1 (3 03— a3 by) \ O
and the RHS. is ' : N

— ¢y (byag—bytp) - by (s 03— C3a5)— a4 (Cy bg:f(?égz)s
which i equal to S
(@ by —as bz)—bl(“sﬁs—aacz)+‘§1(&}5;—bs €a)s {2)
and (2) contains the same terms as {1),"bﬁt“in a different order.
" The proofs for other interchanges are similar.
IV. If a determinant has two, ﬁt;iﬁmns, or two rows, tdentical,
its value i9 zero. R v
"Proor. .Suppose that(the value of the determinant is V.
Theh O |
(i) if the two idémbical columns (or rows) are interchanged,
" the deten;n‘{ihant is unaltered and its value remains V;
(ii) if the hfy?) identical columns (or Tows) are interchanged,
the-value V is multiplied by —1 and becomes —V (by
_progerty IT0).
~ Hence V = —V and s0 2V = 0.
P :
"NV, If each element of one column, or row, ts multiplied by a
factor K, the value of the determinant is theveby multiplied by K.
For example,

122 1 =z| a I =
2% m y|=2lb m y..
2 n =z “le n oz

This property is proved by expanding the determinents; in
the example given, expand by the first column. '
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CoroLLARY TO IV AND V. If the elements of one column (or
row) are K times the elements of another column (or row), the value
of the deferminant is zero. For example,

‘x a 3da ®w v wl
y b 3b|=:0, 41 dm 4dn|=0.
z ¢ 3¢ I m =

VI. The value of & determinant is unaltered if to each elemént
of one column (or row) is added the same multiple of the Corre-
sponding element of another column {or row); for examplé,™

a, by oo a i, by e I N )
@ by ey =|agtlby by cp i
ag by o4 as+1b; by gﬁ*

Proor., We shall prove the example@wen in the enuncia-
tion ; other additions may be treated m\a similar way. [Columns
must ot be added to rows.} )

The determinant on the rlght’:ls (by IIT) equal to

ler by agtiby Ay )
—| ey by ayi-1b, N
€y by ay+1by \
_ 1J 2\\55 -Hlba te, by a,+lb, |b1 a;+b,
, Qa @y+1by | by “3‘]‘353 | by tyt-iby |

By propp\rt'? VI of determinants of order two (§ 3), this equals

_\Q“T‘b ey '51 @y —cy by a |
I] by as 1 bs by, a, |
\ & b a a;, by ¢!
\ - = —| £y bg a.g = | @y 62 Ca ‘ .
b b !
€3 U3 ag g by O3

which proves ou result.

Nore. The essential point of the foregoing proof is the way in which
property VI for two rows and columns is used to prove property VI
for three rows and columns. The other details are relatively unim-
portant; they should not be memorized.

CoRoLLARIES 10 VI. In the following #, m, n denote any
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numbers, positive or negative : the results given are often useful
in evaluating determinants.

a b ¢ a,+1b,+mey, bytme, ¢
(1) jay b & @y tlbgtmeg bytmcy €3],
a; by cq ag+Ibgt-meg; byneg oy

that is, we can add multiples of columns that *come after’;

a, by ¢ a, b+le, c,-Fmbtna
(1) |ag by €| = % bytlay cytmbytnay |, | N
az by ¢ bytlag cytmbytnay OO

that is, we can add multiples of columns that ‘come befor&

Similarly, we can add to the first row multiples of the second
and third rows and add to the second row mu‘}}iples of the
third; or we can add to any row multnples <{f rows that ‘come
before”.

Proor oF {i). The proof consists of shiccessive applications
of VI. Thus, by using VI at each ,step,

ay by ¢} ja by .6 ¢y
a; by ¢y = a, b, by €
ay by € Aaytiby by ¢
¢ ":’al-{—ibl—i—mcl b, o
\\= Gy t-Ihgt+mey by €y
\* VL agtibgtmeg by 6
\ @, L +mey, bytneg e |
Q" = | ap-+-Ibytmey bytme, 6.
O @y +byt-me; bytmey ¢

'"\ﬁbTATION FOoR VI AND ITS COROLLARIES. Worked examples.
We use the same notation as we did in § 3. Examples of the
use of the notation are:

Examene 1. Find the value of
87 42 3!
A=4b I8 7
.1 59 28 3



166 LINEAR EQUATIONS AND DETEBMINANTS

SoLUTION,
0 36 3 ¢, = ¢;—26—Cg,
2 47 ¢ = ¢;—2eg,
0 22 3
[the notation on the right indicates how the new first and
second columns are formed]

A=

36 3|
=2 g 3‘ \
— —2(108—66) = — 84. O

Norr, The numbers first given are too high fp::r%ase of cal-
culation, so we subtract convenient multiples.:éf “columns that
come after’, If we can choose multiples So‘as to get one or
more 0’s in the first column, the subsequent’calculation is made
eagier. ANV

The first column of the new determinant is

0 = 874423,
2 = 452,187,
Q592,283
ExampLE 2. Provethat
A0 0 a—b a—c] -
=|b—a 0 b—e|=0

oY c—a c—b 0
A\

SOI\:ﬁ‘StON Form a new determinant by taking
.\.\w’ . Ty = Fy—Ty, Ty = Fp— Ty,
’"\'f',i.}e. new first row = first row of A—second row of.zi\,
new second row = second row of A—third row of A.
The new first row is thus
0—(b—a)=a—b, (a—b)—0=a—b, (ga—ec)—{(b—c)=0a—"b,
and the given determinant is equal to

ea—b a—b a—b
b—¢ b—e b—e¢
c—a c—b 0
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Remove the factor a—b from the first row and the factor b—c
from the second. This gives {by V)

1 1 1
A= (a—b_)(b—c) 1 1 1],
c—a ¢—b 0

which is zero because two rows are identical (IV).

Exampre 3. Prove that A
111 AN
A=|1 7 2=r{—1r—1). L2
{1 72 ':\'j
SOLUTION. _ P\ 3
LW

On taking ¢, = ¢;— €y, €3 = C3=¢p3)
1 0 U
A=|1 r—1 23
1 81 r‘-’*;}f
When we expand this by its ﬁrst»mw we get

r—1 'rzw’l"
A= 'rﬂ—l it ] | (4)
1

on removing the factor #—1 from the first column and 721
from the secendr column of (A}, Thus

&\— (r—1){r*—1)(r2—71) = f(r—l)s(rzm—l).

\
EX}&MPLE 4. Prove that

"\‘*

~O _ 1 17

I
0.

I

3
3
\’

9
9
1

QoruTIiON, We notice that
19—2.9—1= 0,
17—2.8—1 =0,
15—2.7—1=0.
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On taking r; = r,—2r,—r; we obtain (by VI, Corollary)

0 0 0
A=19 8 7|
f1 1 1

which is equal to zero,

[The expansion of this determinant by its fivst row is

i 0><87—0><97J+0><98],

I 1 1 1 2\
and so its value is zero. In fact any determinant with a complf-te Iow
or eolumn of zeros is itself zore.] e\

oM
Exampres XIIT o . <”}5

1. ¥ind the values of the determinants m< 44
96 47 23 15 7 8 N8 9 10
97 43 21 17 8 9,0\ 4 5 8 J
98 49 25 | 28 0 124D jo1 92 93

2. Find the values of the determhﬁ:{ts
17 46 7 17 4,6“7 1001 17 21
20 49 8|, 20099 &/, ‘1002 18 4 |.
23 52 9 23 Y52 12 1063 19 7

3. Prove, by adding or' Bubtractmg multiples of rows, that cach of
the determinants '\

¥tz z-ta o4y .\j b0 c—a a—b
x ol z 4N o o b
A oL I
is equal to\Ers.

r+y wiv X+Y |
23y 2ud-3v 2X-13Y |,
de--5y 4ut 5 4X - 5Y

4 11‘0% by adding or subtracting uitiples of eolumns, that each
é eterminants

z?v-z Yz oy {x—1Y 211 .2 x4ty Tr+8y Sx+1ly
‘\‘TJZ'H.}” a+x 2|, {¥y—17 241 y |, u+v Tuf-8r Guitlle _
Nlr-yiety @ (z— 1P 2241 2 X4¥Y 71X 48V 9X 1117 |

is aqual g zero.

Y
5. Prove \{mt

i}

= (y—2)z—a)z—y),

(id) = ri{r—1)%r2—1),
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11 1
(&) 1o =Rt -1-1)
EFCRRN

73

6. Prove that

z+y Tr+8y 9x-+10y

atv  Tuil8r Suille

X+Y 1X+8Y 9X412¥
Hwr, Simplify the determinant by subtracting multiples of columns

before expanding. '

= v{xY +yX)— 2uyY.

7. Prove, hy using VI, Corollary, that a deferminant whose third row

is the sum of the first and second rows has the value zero. ¢\
NS ¢
x lrtmu w \
8, Prove that y Wytmy v | =0 N
z lzdmw w " \
AN

6._* Minors and cofactors

6.1. The determinant of order two obtég\}éd by deleting one
row and one column from a determing,ﬁ};})f order three is called
a MINOR. For example, WV

% G (1)
U3eifs
is obtained by deleting the,s?jcrind row and the second column
from Na, b 6|
2N\
(A= lay by 02‘:
\ ) a; by g

and, since the Qéiétz,ed row and column both contain the element
by, we ca]ln{{} the minor of by in A,

6.2.’\'@1\&3’ expansion of A is _

R ‘ @y by Cy— @ baCa -y b30i— by Catay brea—azbycy. (2)

~The terms of (2) may be grouped together in many different

Novays; two such ways are

a, X (minor of 4,)—a, X {minor of @)+ (minor of ag), (3)

—a, X (minor of a)+-by X (minor of by} —¢, X (minor of ¢;}.  (4)

The presence of the plus and minus signs makes these expres-

sions awkward to handle. We can simplify these expressions
by introducing the ‘SIGNED MINORS’ oF the ‘COFACTORS’, Which

are merely the minors prefized by the appropriate signs.

Q!
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DerinrtioN. The cofactor of the element in the rth row and
sth column of @ determinant A is (— 1)+ times the minor of that
element.

For example, _

@, 18 in the first row (r = 1) and first column (8 = 1) and the
cofactor of @, is '

(_1)1+1 by - by ¢, .
_ by ¢ by ¢
by is in the third row (r = 3) and second column (s = 2Nand
the cofactor of b, iy _ O\
(—1p @ G| (4 O oY’
@y €y By L2 o~

Norarron. We denote the cofactor of ay b&A‘l’, the cofactor
of b5 by By, and s0 on. We use a similar efation with other
determinants. T N\

6.3. The expansion of a determinant’ When we use the above
notation for the cofactors, the varisus ways of expanding a
determinant can be set out in anyery simple form.

We know that \

N a b 51
A=Va, b, ¢,
K a3 by ¢

= b, Cs‘“i\g'é Ez+az bya—ay by 05+ay by c,—ag by,
This may be written in any one of the forms

=0 AN, Bi+e, 0y, A=a,dita,d,+a, 4, } :
- (5)

;a}zii-bz .32—1-62 G, A= bl -Bl+bs Bz‘i_bs -Baa

+05 Bytey A=¢ Co, Cot0,Cy.

Ry be expressed as

v of a determinant, multiply each element of the
clor and add; the sum is the value of the deter-

mnant; it is called, the expansion of the determinant by that row.
Take any colum of a determinant, multiply each element of

ofactor and add; the sum is the value of the

the expansion of the determinant by that
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6.4. Further properties of cofactors. Consider the determinant

a; by ¢
AN=la, by ¢l
ay by ¢4

We may note two things,
(i) A’ = 0 because two rows are identical;

(i} A" differs from A only in having a,, by, ¢, instead of
@y, by, ¢, in the first row. Hence, when we expand A’ by its

first row we get (since A = a,4,+b,8,4¢,C}} O\

A" = a; A;+by B+, Oy . 's:\ '
This shows that 0 = ay 4, +b, By ¢, ), N (6)
and, in the same way, we may show that \\

‘the sum of elements of any one row multij:h’%d by the corre-
sponding cofactors of ANOTHER row 1§ 2619/
As further examples we note thab \ v
@, A5+b, Byt Gy=0,
g Agtby Bty Oy = 0, (7)
ag4,+ by :Bi'jr"?fs 0 =0.
Similarly, we may show that
 ‘the sum of elemen&sf@' @ column multiplied by the corresponding
cofactors of ANO'?I}E}% column is zero’. For example,
¢ ~ @y Bytay Bytay By = 0, .
.j\:“' b1A1+bzA2+bsAs =0, (8) )
\“\ ¢y A ey Agtcgdy = 0.

2 &

6.5, The propositions contained in §§ 6.3 and 6.4 are of the
\ﬁ}st importance in nearly all work involving determinants and
U the reader should know them thoroughly. He should also know
how to apply the notation for cofactors and the foregoing
resulfs to any determinant he may encounter. The determinant

a h g
A=kbf
g [ ¢

is of particular importance in analytical geometry. Here 4, H,
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@,... denote the cofactors of 4, &, ¢,... in A. For example,T
i
B= (1 v 9 i = ac—g?

h g

- —l 241
H=(-1) F oo
the complete list of cofactors being

A =be—f2,  F=gh—af,

= fg—ch;

B = ca—g?, @ = hf—bg, . \
C = ab--h?, H=fg—ch & )
The expansion of A is A
abc+ 2fgh—af 2 —bg*—ch?; ~‘ h (9

the formulae of § 6.3 give ."‘:,\\
A=ad+hH4gGN
_ A
A = RHbBAfT;
A = gG+fEFeC.
The reader will notice the syfmetry of rows and columns in
A; because of this symmetry .the expansions of A by rows are
exactly the same in form'as the expansions of A by columns.
Further, the propositions of § 6.4 that “the sum of elements
of one row {or coltwhn) multiplied by the corresponding co-
factors of anothég'row (or column) is zero’ give results like
aQURF+gC =0, hd-pbHAfG = 0. (10)
If the m}a}ier can, in his analytical geometry of ‘the general
conic ’?~{§}m to use expansions like a4 ---AH +4-g@ instead of (9),
and~te Tecognize results like (10) instead of laboriously can-
’Q.e'l:}ing terms in
a(hf—bg)+h(gh—af }-+g(ab—Ph?)
and h{be—f2)4-b{ fg—ch)+-f(hf—bg),
he will have made a great stride in the use of determinants.

7. The solution of linear equations
7.1. There are two major results. These are:

_ 1 Notice that the minor of % is the same whether we consider the & of the
first row or of the firat colummn.



LINEAR EQUATIONS AND DETERMINANTS 173

1. The solution of the three simultaneous equations
ay &4-byy+ez = dy,
@y Z-+by y-+Ce2 = s,
asaxtbyytcgz = ds,
is given, in general, by

_ d, by ¢ a, dy e la, B d;
Az ==ldy by ¢l Dy= |y dy ¢y, De=1a by dyly
dy by ¢3 a3 3 €3 ag by dy
where A denotes the determinant whose elements are the coefficients

of x, ¥, 2, namely a, by o A\ QO
A=lay by ¢} N\ ™
ay b3 ¢ \\

The exception to the general rule occurs when AN,

It will be noticed that a column of d's xrebltaces a column of
@’s in the firs$, & colurn of b’s in the éecond and a column
of ¢’s in the third determinant of thé sclution.

I1.- If the equations o

‘ ay @by gkt z = 0,
azx—L—Sé yt-cgz = 0,
asﬁﬁ‘bs y+c2 =0,
are satigfied by any .s)sQaf values of z, y, z other thanz =y =z=0,
then A = 0.
Conversely Mif A = 0, then the three equations are satisfied by

asetofvaluésofx,y,zothertkanx:y-z_- 0.
It w%be noticed that x = y = z = 0 always satisfies these
equatlons The point at issue is whether there is another

.solr)tlon
Y ComorLary. If A 5= O, the equations have no solution other
thanx = 0,y = 0,2="0.
In such a case the first two eguations are satisfied by

2 = Ab cg—bp¢y), ¥ = M@y Ca—nCy), 2 = Mayby—asby) for
‘any value of A, but these values will satisfy the thlrd equation
only if A = 0.

All readers should take careful note of these results, which are widely
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used. Many readers will find the proofs, which are given in the sub-
sections that follow, not altogether easy. The proofs need not be
mastered thoroughly on a first reading of the book; when the reader
haa grown familiar with determinants and cofactors, he will find that
the proofs fall naturally into place; he will then wonder where his
difficulty lay and probably consider the proofs presented here to be
unnecessarily long and explanatory.

7.2.* Proof of I. Suppose that A # 0. Then, using the
notation of cofactors of A, the solution given may be written
A = dy Ayt dg Agtdody, Ay = dy Bytdy Byt-daBie)
Az = d,C,+-dy Cot-d5 e O
If we substitute these values in a, x4-b,y+¢ 26 get
{ay(dy Ay +dy Aytdy Agbi(dy Byt dy Bz"l‘@a‘:B;)—‘r
+exldy Cl‘i‘ﬁiz Co-+ds C)}/A

d do, AN
= Kl(aq A,+by Byt G+ f({‘a}é‘ﬁ‘ by By+6, o)+ _

« da
& f(“’l Ag+-by Byte, Gs).
Now, by the results of §§ 6~3and 6.4,
a, A48, By4c  G= A, @, Ayt-by Byt¢, Gy = 0,
¢ QL s+by Byte, G5 =0, '
and so, with the, %ove values of 2, ¥, 2,
\ a2yt = dy,

and we may’ show in a similar way that these values satisfy
the of er two equations.

;Z\{pt} on the proof of I. In order to find the solution, for =

gay, multiply the given equations by A;, A,, A, respectively
\ f,and add: the result is, in virtue of §§ 6.5 and 6.4,
\\‘\ A.x“t—O-y'i"O.z — d1A1+d2Az+d3As'
Similarly, \\
0z+A.y+0.2 = d, B,-+ds Bs+dy By,
0.8:40.9+A.2 = dy G-+ 5 Gyt dy s
. :

7.3. When A = § the solution breaks down because we cannot

then divide by A, such a case it will sometimes be found
\ .
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that the three equations are not independent and that one of
them is automatically satisfied whenever the other two are,
gometimes that the equations have no solution. We shall not
attempt to handle the general theory, but we show the sort of
thing that happens by considering two particular examples.

ExamprE 1: A = 0. Solve the equations

g-ty—z =1, (i} »
bu—dy+Tz = 1, - i)
72— 3y--6z = 8. Lty
SovruTion. In this example A\
2 1 -1 'O
&
A=|8 —4 71=0 \
7 —3 6 \
N

[the third Tow is the sum of the other two Tows].

If values of @, ¥, z satisfy (i) and (i)} then also

(22+y—2—T)+ (e Wyt 72—1) = 0,
ie. Ti— By 6z = 8,
and (iii) is automatically gatisfied.

Hence our problgmzfij&luces to that of solving (i) and (ii).
Let z have any va.lu\e\\whatsoever, gay z = A. Then we have to
solve, for z and g.the two equations

O 22y = T+\,
O Sx—4y = 1—TA.
“Tho sdlition is 13z = 293}, 13y = 33--19A. Thus the solu-
‘p\ionljof' the three given equations is

\V 13z — 20—3), 13y =33+19), z=}
where A is arbitrary. 4
ExampLE 2: A = 0. Solve the equations _f,':’
oty+z=3 / @)
2x—3y+-22 =1, / (ii)

Se—2y+3="T. (i)
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SoLurioN. In this example

1 1 1}
A=12 —-3 2|=0
3 -2 3

[two columns are identical].
If values of #, ¥, = are chosen to satisfy (i) and (ii), then also

{z+y+e—3)+ (2:1%—39*—1—22—1) =0, O\
ie. ' 3&:—_—23;.—}—32 = 4, O\’
and so (iii) cannot be satisfied by any values of qg,i;,}, 2 that
satisfy (i) and (ii). . N
The*three equations are inconsistent and nolset of values of
%, y, z can be found to satisfy all of them githultaneously.
7.4.% Proof of 11 (i). We here proxé that “if the equations
a x+by y—[—.'c;:z‘ v 0,
agx—i—bgg'—i;bzz =0,
5 xjf'lfa'y—l—csz =0,
are satigfied by a set qf@&lues of x, y, # other than x = y =2 = 0,
then A = 0. (O '

£ \Q,f
As before, lét }1, B,,... denote the cofactors of @y, by,... In
O i @ b ¢
\’\ " A=la; by ¢
\\ a; by g

Miﬂtip’ly the given equations by A4, Ao, A, respeetively and
~(add. The result is
Axz=0
{as in §7.2). Similarly, we obtain A,y = 0and A.z = 0.

Hence, if any set of values of , y, z satisfies the three given
equations, this set of values also satisties

Mg =0, Ay =0, Az=0,
and if one or moxe of z, ¥, # differs from zero, it follows that

A= 0. : \

N\
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7.5.* Proof of 11 (ii). We here prove that ‘éf A = 0, then
the equations @ 24-b y4e,2 =0,
Bpxtbytez =10,
ayx+byyt-cgz = 0,
are satisfied by a set of values of x, y, z other than the set
r=y=2=0.
The run of the proof depends on whether
(a) one at least of the cofactors A4y, By, Gy of Aig onob

equal to zero, O
or (b) all the cofactors of A are zero. N
We are given that A = 0. \\
Fimrst suppose that one at least of the co Sctors differs from
zero; say, B, # 0. Then, for an arb1trar{ ue of k,
: x = kd,, y = kBy, 2\2 = kC, (0
satisfies all three equations; for N )
I“1 Aytby Byte, G 0 (by § 8.4),
A,+by ngl—cﬂ.@z = A =0 (by hypothesis},

Moreover, when k { 0-the valae y = kB, differs from zero.
This proves the propos1t10n when B, # 0 and it can be similarly
proved when aqy‘ ‘one of the cofactors is not equal to zero.

NExX guppose that all the cofactors are zero, but that one
at leagh ot the coefficients a,,..., ¢3 is not zero; say, ¢; 7= 0.
Leto:c y have arbitrary non-zero values; say,

\"' &‘:—-Clk -'-'—olz (LI#O),

a,;ld choose z so that the first equation is satisfied. That is,
x = 6y K, 9y = c 1, z = ~—(a, k-6, 1) {(2)
When we substitute these values in a,@+byy--cyz we obtain
ay ey k+byo l—cst k—cy b1 = (ag 6, —aq €5)+1{by ¢, —b165)
= kB;—14,=0,

by the hypothesis that all the cofactors are zero.
4868 ] W
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Similarly, '
50y k+4-byey I—cslay k40,0 = O.

Hence the values (2) satisfy all three equations; moreover,
¢,k # 0 by hypothesis. This proves the proposition when
e, # 0 and it can be gimilaxly proved when any one of the
coefficients ay,..., €3 18 not zero.

FINALLY suppose that all the coeflicients are zero. Then the
thres ‘equations’ are satisfied by any values of z, ¥, 2 what-
soever and the proposition is proved in this (very easy)(cage also.

Hence, in all circamstances, ‘if A = 0, the thrés ‘equations
are satisfied by a set of values of 2, ¥,  which gre, hot all zero’.

Notice that the proofs show how to wn\ti: »down values of
2, y, = that satisfy the equations. O

7.6.% A deduction from 11. The egpations

“1x+b1?f‘}‘.3;‘\= 0,
a2x+b§3{%’é2 = 0, }
AT by Y+ = 0,
are obtained from thethitee equations of § 7.6 by putting 2 = 1.
Thus, if the eq dtions (3) are consistent, that is, if there are
values of x and § that satisfy them simultaneously, the equa;-
tions of § 7.5, have a solution with z = 1; and, therefore, A == 0.
If A 20 the equations are inconsistent, that is, no pair of
va,lue's\i)f)x, y satisfies all three equations simultaneously.

(3)

&
H7.* A theorem in analytical geomelry. The most important

) ‘@pplication of the ideas in § 7.6 occurs in analytical geometry.
4 ~\’ ¢

A theorem of frequent application in analytical geometry runs
as follows:

TagorREM. Let

txt+b yte =0, (i}
ayx+4-by ¢ = 0, (ii)
agt+byyt+cy = 0 (i)

be th_e equintions of three different lines. Then, if the lines are
concurrent or are all parallel, A = 0, conversely, if A =0, the
lines are either concurrent or are all parallel.
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Proor. If the lines are concurrent, there is a pair of values
x, 3 that satisfies all three equations and, as in § 7.6, A=0.
If the lines are all parallel, C; = ayby—ayb, = 0, and, simi-
larly, Cy = Cy = 0, 80 that
A = ¢, CFc, Oyt Gy = O

" Conversely, let A == 0. Then, by II of § 7.1, there are con-
gtants I, m, 7, not all zero, such that

la,+-may+nag == 0, O\
Ib, -} miby+nb; = 0, A
le, +megt-ney = 0. G

7N

“ Suppose that n is not zero. Then, for all » and Ky 0
n(@gz-+byy-+cs) = —3(“1x+619+01)“‘m(3237;1”52y+02)-

Now if m were zero, this would give \*\\

X

~ EITHER
“(asx+bsy+ca) = —la, xﬂ“b.‘; -y} (I #=0),

which would mean that (i) ?,na(:'(iii) were the same line, and

this is ruled out by the hypothesis that the three lines are

different, Q
OR (g ;t‘b,gy-{—cs) =0 (=0),

which would megn that (iii) was satisfied by every x and ¥,
which again i&’miled out by the hypothesis that (iif) is the
equationno’f\'ar line.

Accor@g\ly", m % 0 and, similarly, I 5 0. Thus there are
constants I, m, n, no one of which is zero, such that, for all
z a0d'Yy, |

N ;l(aglm_—|—bly—{—cl}—]—m(azx+bzy+cﬂ)—1—n(a3x+53y+c3) = 0.

Hence, if two of the lines meet at a finite point, the third
line passes through that point and, if two of the lines are
parallel [say, @y = ks and b, = kbs, so that (ii) and (iii)
are parallel], the third is parallel to both [la, = —(nt+-mk)a,
and Ib; = —(n-tmk)by, s0 that (i} is parallel to (iii)].
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- Exawrres XIII =

1.* Tind the values of X, ¥, Z, the cofactors of z, y, z in the deter-
minants '

1

2

®

®z Yy 2 a b c
v x Yy =
P g i

[T

1
(i) . (it} . {iii) 4 1.
I m n z

=

2.% Prove that, when A denotes the deferminant _
a h g N\
A b f
g [ ¢ '
pnd A, H,... denote the eofactors of @, k... in A,  \J
a4 2R FG4-bFE+ 2gGC 1+ 2FFPC+eC = @A A

Hint. Use aG+hF+gC == 0, ote. '\\

'\
W

3.* Obtain the solution of the equations

ur+hy+g = 0, hx+pg,fe}f: 0
R

in the form : — =%

¢~ F gV
where @, F, ¢ have the mea.m.ngs asslgned in Example 2.

Solve the followmg sets of ggmtﬂtaneous equations:
4, otytz =1, A% 5. Zz—ytz =
Y+ 4y—3z = 9,m\ 3x+y— 52 = 13,
br—4y+z ﬂ\Q z4+y+z =5
6. w—f—J—l;z = 6, 7. Jw—y+4z =13,
Se—gNSeh = 0, 5x+y-—3z = 5,
3.):5—1(\)}/— Bz = 0. r—y+z = 3.

8. *’%\ty—k" = 1, wetby+ez = d, afr+biy+ ez = d2,

HINT Use the answer to Examples XIIT o, 5 {i).
\ 3

. \\ Prove that each of the following sets of sirnultaneous equatlons 15
inconsistent:

9. wdyz =1, 10. gtz =T,
2rt4y-—3z =0, 3z4-y—b6z = 13,
3+ 5y —2z = 11. 2 -6yt 14z = 2).

11, z—3y-tz = I,' 12.* #ly-bz = 6,
Zx—0y+ 2z = 3, Gu—y42z =29
G —9y+ 5z == 10, 15— 9y+32 = 7
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HinT for 12; A = 0 and therefore, by II of § 7.1, constants 1, m, #,
which are not all zero, can be found to satisfy
I4+5m+1on =0, —m—9n =10, I+2m4-3n = 0
Find [ :m: n from any two of these.
Aliter. Solve two of the squations for z, ¥ in terms of z and substitute

in the third.
Examples 10 and 11 can be worked in the same way -

Find a general solution of each of the following sets of equations (if /\
necessary, use the hint for Examples 10-12). A
N/

13. z+3ytz =5, 4, w—ytz=1T, R
2z} Ty—z =8, 8z f-y—6z = 13, Q
B+ 18y—4z = 19, Br—dz = 20:,\(’3
K
15.* N 0 g
Sp—y+2z =9, \\\
382— 16y 11z = 39. N
”'\(/
NG
N
«:’:Q
Q)
~
O
) '\‘\ /
(\
OV
A%/
L >
t:\\’wl
Y
/\../
.\\
=~



CHAPTER XIV*
FURTHER PROPERTIES OF DETERMINANTS

.1. The expansion of a determinant
As we have seen already (e.g. Chap. XIII, § 6),

I, my ny
Iy, my my M)
Iy my my; >

O\
= L myng—Ilymyny+lymyn, —Ilm, n3+33m1n2f23;m2_ﬁ1_. (2)
Now there are 6 ways of arranging the numbers 1, 2, 3 in
different orders and it is just these differen ‘@¥ders that occur
among the suffixes in (2). Moreover, if westhink of the numbers
1, 2, 3 arranged round a circle, as ir\j}he figure, the sign of
a term in (2) is < 0

v

O\

p Fie. 24

) S

(i) pLuS “when the suffixes Tun clockwise,t 123, or 231,
or 3 :!-' g b‘..

‘ \{i\{}l‘u’imus when the suffixes run counter-clockwise, 1 3 2, or
208, 0r 32 1.

OO Accordingly, we may denote (2} by

\‘;

2 t{lmn}yy, (3)
the notation implying the sum of the six terms got by putting
the suffixes in their six possible orders and fixing the plus or
minus sign according to the rule just given, :

T Thiz simple rule applics to determinants of order 3; neither it, nor any

simple extension of it, applies to determinants of order 4 or more. “The aigns

of the terms in such determinants are fixed by & rule that is not based on
eyelic order.,
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2. Composite determinants
We apply the ideas of §1 to the determinant -
ay+&y bty atan
Gyt batys Cot2a s (4)
aytxy bytys Cat%
in which each element is the sum of two terms.
Now the expansion of (4) is

2 ﬂ:{(a"l‘m)(b‘i“y)(*:—l‘z)}ma- 4 (E)
But the product (a-2)(b-+)e-+2) | S
is the sum of the eight (= 2°) terms ' N

abe, abz, ayc, oyz, wbe, abz, xyc,\wyz
and so (5) is the sum of the eight parts ’
> d{abchs . > tiabzlis <\>: +{2y2hes- (6)
Thus {4) is the sum of the eight detgrminants

- X L

g b o a; b % 2 Y1 &
a, by € ay bghzals o | %2 Ye Zy |-
tg by €3 agids 23 lzy Yz %

We set out this result as a formal theorem.
+8 3

THEOREM 23. mcfetermimnt

Nayte, bt ata
ap-tay bat¥a CatZa
i ag s b3t¥s Cat?s
is the?um of the 28 determinants corresponding to the 2° different
wqyé'of choosing one letter from each column.

N/ Comorrary 1. If each element sa the sum of three terms, the
determinant can be expressed as the sum of 8% = 27 determinanis.
There are 27 terms in the full-length expression of the product

(a+x+sp)(b+y+q){c+z+f)-

Nore. There is just one point in the sequel where we shall
use this corollary. We shall NOT write down the 27 terms, bub
- we shall have to know that they are there to be written.

A&

o
:"\s.
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CororLARY 2. The determinant
a2, Oty
| ety By,
18 the sum of the four (= 22) determinants
a b @ Y| z b i Y|
ay by &y Y, z; by Ty Y2
This is most easily proved by expanding the first determifiant
and then picking out the terms in ab, in ay, in zb, a.nd\in zy.

"The reader should do this; it may help him to see ;ust what
happens in the proof of Theorem 23.

P
S D

3. The product of two determinants \‘
3.1, THEOREM 24. If O '

tay & ¢ ] \ T Y %

a; by ¢;l, ",N:*: Lo Yo s

@ by ¢4 ,g‘“’ Ty Y3 %

the product AA’ ts equal to t?gg.{déiermz’mnt

Loy 2y +-by ey 2y ,f”;i.i"z“l‘ biypt125 @ @t-byyyyter 2z

Gy 1 +-ba gy 0oz Batatbayytcyz, g tbyyateszs |-

O3 +0s Y1ty AsTat-byyatcaz, “sxs‘H’s YatCs?s
Proor. By Th}orem 23, Corollary 1, D is the sum of 27

determinants,( These fall into two types, which we shall con-

sider separapely in (i) and (i) below.

(1) F hje}e are 21 determinantst which have the same letter
in twb'Or more columns; each of these is equal to zero: e.g.

A:

D:

"y

N° 0T G, by, ' o a b
\”\3 v Ba%y Qa%y byyg | =Z03y51 8, @y by| =0,
Ay gy byyg a3 a3 by

- the value of the last determinant being zero because two
columns are the same.

(ii) There are 6 determinants with different letters a, b, cin

t The total 21 is made up thus: 3 have the same letter {z, b, or ¢) in each
column ; 6 have a in two columns with & or e in the third; ¢ bave b in two

colamng with ¢ or @ in the third; 6 have ¢ in two columns wn—,h « or b in the
third.
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the different columns, These correspond to the 6 ways of
arranging the letters a, b, ¢ in different arders.

Consider any one of these orders, say a, ¢, b. The corre-
sponding determinant is

az; iz By a 6 b
Qo®y CoZy bala | = %1¥s% | G2 Oy by
as®y Ca%y Days Clag € by |
tay b ¢ A
= X Y32 |Gy D2 Cos \\\
as by Ca\ Dy

the minus sign appearing when we interchange colu;mafs in order
to establish the alphabetical order «, b, ¢ in the determinant
on the right. We notice that the original ordeiNd, ¢, b, with @
in 1st place, b in 3rd place, ¢ in 2nd place; seerresponds to the
guffixes 1, 3, 2 for z, ¥, 2 Moreover,;%a’r’lyazz is & ferm in
the expansion of A’, the minus sign heing given by the rule
of §1. N

Consider a seeond order of thf:":l’ef.tcl'ﬂ, say ¢, @, b. The corre-
sponding determinant is N\

an 0% 0l a; by o6
Jh e | L
Cpzy Up® \?’zya = 4237 2 b Lol

C3? Uiy b33 ay by ¢y

the plus sign, a’f»ﬁéaring because we have to make fwo inter-
changes of ¢dfumns in order to change the order ¢, @, b into the
order a,\l{,.}: " Again, the order ¢, @, b, with @ in 2nd place, b in
3rd plaee, ¢ in st place, corresponds to the order 2, 3, 1 in the
§ujﬁlxéé for z, y, z. Moreover, +-2,¥37%, is & term in the expan-
Caipri of A", ,

The results are similar for the other determinants of type (ii);
each furnishes A multiplied by a term in the expansion of A"
and the 6 terms of this type furnish the 6 terms in the expan-

gion of A',
Hence D= AX S L{ayzhey = AN

3.2, Note on the proof of Theorem 2+ This proof becomes simpler
when one knowg how to handle a determinant of order n and knows
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the general rule for assigning -'{—' or — to the terms in the expansion of
a determinant. Tho present proof is worth mastering, in order to con-
vines oneself of the truth of the theorem; bub the proof is not worth

memorizing.{
The theorem and its immediate consequences are widely used.

4. Determinants whose elements are cofactors

In this section 4,, 4,,..., C, denote the cofactors of @y, Ty, . 7505

.

in the determinant a b o O
A=(a, b, ¢l A\
ag by ¢y ’ ‘s
4.1. THEOREM 25. p \\ !
4, B, C GO
4, B, G|= ﬁi\
14; By & \

N\ Y

Proor. First suppose that Agé”O Then

@ b o 4, B Gl
@ by ¢ |X| 4y, By G’
a3 by Aq 'ﬁi Gy
@ Ay+b, B, 1@‘5 @ Aoty By, €, @y A3+by Byt-¢, G|
= @ Aty Bpwey Gy @y Apt-by Bytc, G @y Agt-by Byt-cy Gy |.
G3A1+§33;ﬁ;0301 5 As--by Byt 0, by Ay+by Bytey O

By the ::Eééi]lts of Chapter X117, §§ 6.3 and 6.4, this reduces to

N

Q7 A0 o
N 0 A 0]=A3
S 0 0 A’

\ Hence, when A =£ 0,

4,.B, ¢
AX Az .Bg 02 - As,
4 By G

t I wish that the proof of ‘the product: of determinants’ were expressly
excluded from all examinations below wniversity examinations, when it should
be included for n and not merely for 3,
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and so 4, B, ¢
4; B, G|=A (1)
4; By G

Now each side of the equation (1) is a polynomial in the
variables a,, @,,..., ¢ We have proved the result subject only
to the condition that the polynomial

A =g byeg—a bycet... # 0. {2)'

Hence, by Theorem 7 (the ‘irrelevance of polynomial meguafh—
ties’), (1) is true for all values of the variables gy, @y, & and
not merely for those that satisfy the inequality (2); \ R

O\

4.2, THEOREM 26. RN ’
B, Cy | 4, O \‘ B, G

= ay A, =h A = @y A,
By G| ™% 4 o =105 6=

the expressions on the left being r@specmely the cofactors of A4,,
B,, A, in the determinant oj' T?zeorem 25; and so for the other

cofactors. .

.

Proor. We shall fifove the first and the third of these
results : the methqd\s}’ proof applies to all results of this type.
First supposqt.?lalt A % 0. Then
N \ /

a by cl \ 4 0 0
ay by E|X| Ay By Cy
Gy ﬂa\ca 4, By G
O ay “1 Aty Byt Gy a3 Ag+by By, Gy
N/ —| @y aydatby ByteaCy Gy dytby Byte:Cs
g asAz"i‘éaBe‘l‘cscz a3 Ay+bs Byt-ca Gy
a 0 0 _
=ta, A 0 |=adl}
" la; 0 A
so that
By Gi| _ 4 AYA = a,A.
By G
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Again
@ b o 4, B G
ay by clx|1 0 0
ag by o4 4, B, G
ay A0y By-bey Uy ay  ay Ag+by By-t-e, G
=l ag A +b, B0, 07 ay ayAgtb, Byte, G,
ag Ay +by B+, () ay “3‘43‘5‘5333‘1&‘(’36}_
A a; 0 j L\
=10 a 0 |=u,A% s..\ '
0 a; A (‘:f;'
that . 7 \
80 & _ -Bl 61-' A ’»"\\'
B, ¢ z

This proves the results when A —Tf:O;\“‘But the latter iz a
polynomial inequality and is therefare jrrelevant to the equality
of two polynomials in the elemer{tsll:pl’,:.., ¢3 (Theorem 7). Heunce
the results are true both wher‘},’A}:.— 0 and when A # Q.

4.3. Special cases of i’?aéé?ie;n 26. When A, H, @,... denote
the cofactors of , &, g, in

i,\ a kg
XNCOA=|k b f
." g f c

Theoremx 2\61%1"%@5 the useful faots

Y BC—Fr=ad, GH—AF = fA,
O CA—G*=0bA, HF—BG = gA,
) AB—H*=cA, FG—CH = RA.

5. The cofactors of a zero determinant
5.1. THEOREM 27. it’)‘e-en A =0, i
B: 02 = B:a 01» OzAs = CsAs»

and so on; moreover, when the cofaciors are not zero, the cofactors

of any one row are proporiional to the cofactors of any other row
(and so for columns),
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Proor. By Theorem 26, the cofactor of any element 4,

A,,..., 0y in ‘31 B, 0]
L4, B, G
Ay By G

is equal to zero when A ==0. Hence B, O~ B, G, =0,
B, C,— B, 0, =0, and so on. This proves the first part of the
theorem. N\

We now wish to prove that 4, B, C are proportionalto
4,, B, C,. Suppose that at least one of the three n}l@be}s
A, B,, C, is not zero; say, By # 0. Then, by wha,!;;}{'e have
proved already, A 3

Ay B, = B A,, 0, B, =Gy -Bi‘v.\\.

so that.

a\J

B B, . o

If, further, B, # 0, there is a 111;;1’1,1581" & = 0, such that
A, = k4,  BusskBy G =1H05

that is, 4,, By, ) are }_n:()p;if‘tional to. A, By, Gy

5.2. Note on Tl e‘or>m 97. When some of the cofactors
A;,..., €, are zerg, tare 13 necessary in applying the idea of one
row of cofa,ctoré being proport-iona_l to another row. It is safest
to go bac}s\t{},}the forms B, Cy = By, ete, and see what they

yield. o\~
A?{Q}”éxample of what happens when zero cofactors occur,
coggidor 1 2 3]
.7 ,
) A=]4 5 6/=0
4
N 18 10 12}

in which
4, =19, B,=10U 0, =0,
A?. - 6, ) .Bg — —'12, Cg = 6,
A, —=—3, By=86 C, = —3.

'The columns are proportional; the second and third rows are

proportional.
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The reader may prove for himself the result; ‘if A = 0 and
if not more than one of 4,, A, A4 is zerq, and not more than
one, of B, By B, is zero, then B, B, By are proportional fo
A,, 4,5, 4,5, Thereis, of course, a similar result concerning rows.

6. Other methods of multiplying determinants

The method of multiplying determinants given in Theorem, 24
is commonly called ‘multiplication by rows’; the processsof
forming the product is based on rows. Since determindnts are
unaltered when rows and columns are interchanged( thiere are
other methods of forming the product. The ‘Qwo most im-
portant are D

. N\ .

(1) “multiplication by columns’, when wé(pork exactly as in

Theorem 24 but use ecolumns insteatl 'of rows;
(2) ‘multiptication of row by colu;l_jtiﬁ)? ; when we use the rows
of the first and the column$of the second; this is called
‘matrix’ multiplication smce 1t is the rule for multiplying
matrices. ~.~.
‘We mention these method‘a{iri case the reader should encounter
them in his reading @f\other books. In the examples which
follow all multip]i(;a’tibn ig by rows.
N

7. Determindnts of order four

The detéruiinant
iIN

1 € gy

9
(-1

]
B

3

& A
.\\7 a, b
by ¢y dy|

P ;
ay by ¢ dy:

is of order four; it has four columns and four rows. It denotes

by ¢y dy s cy dy |
@y lby ey dy|—biiay, ¢ dy |+
by ¢ dy| a, ¢ d,
ty by dy a, by €
+cl 3 ba d.; '_dl dg 63 Cs |,

1@y by dyl e, b e
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which can be further expanded into a form
E :i:(arbsctdu]:
where r, s, {, u are the 24 permutations of the numbers 1, 2,
3, 4 and the plus or minus sign is fixed by a definite rule.
The properties II-VI, already proved for determinants of
orders two and three, can be established for determinants

of order four or more; some of the proofs are easy, some are.
hard. All such proofs can be deferred until the reader studied

determinants of order ». : (\)
We give two examples of the evaluation of determ'iilia}lts’ of
order four. . N
K9

ExamrLE 1. Evaluate the determinant

14 3 8 2
16 5 63"

A= Nd |
15

9 2
8 3

SoruTION. We aim, by'adding multiples of columns, to get
two or more zeros in tle new first column [this to reduce the

subsequent ca]culit'{énk].
' 0" 3

8 2
@ 0 5 6 3 ’
BT 21 4 = o 20
o) 1 3 1 5]
O 35 8 2| |3 8 2
NN —4|5 6 3{—|5 6 3}
Q" 31 8| |21 4

on expanding by the first column.7 Thus
A = 4{3.27—5.38+3,12}—{3.21—5.30+2.12}
— 4(117—190)—(87—150) = —229.

+ The definition given expande by the first row, but the expa.n_sion can he
regrouped {as with dsterminants of order three) to give expansions by any
row or column,
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Examere 2. Proce that

111 1 1
I r 2 %) 0
1 2 2 gt )

1 # 7 s
Sonurtiow (i). The expansion by the first row is the sum of
four terms cach of which is zero (the reader should write down

the four terins like QO
rorr g8 1 72 92 KoY
ARl bl I T Al s a0 O
prd ot s ot yd N

and sce that each is zero becanse two column{bli'e proportional).

Noreriox (i), Form a new determinangwith

€y == Cpy, Oy == Eg— Coy y N €y == €4—Cg
[“columns that come hefore’]; the’ri?sﬁlt is
0 0 o 1O

Yo
R I s < i A 11 :3 A :j s
o B L
1Pl g g 7L e

which is zero becags;é the third column is 7 times the second.

8. Factors of determinants

The remamder theorem, coupled with the method of equating
cocfficients in polynomials known to be identical, often enables
us to{a}tomze a determinant with a minimuwm of calculation,
So@gmmes the addition of rows or columns will indicate factors
efa determinant. The following are typical examples:

.n\’
N\, ExampLE 1. Prove that

li 75 bﬂ CE 1
A=|a b c¢|=(a—bla—c)(b—c).
P11 1

SoLerios. On expanding? A, we see that it may be regarded

(i} as a horr}oweneous polynomial in a, b, ¢ of degree 3 in
these variibles;

T Balher, on thiuking wiat the expanzion would be if wo worked it out.
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(ii) as a non-homogeneous polynomialin e, of degree 2, whose

coefficients are functions of b and ¢.

Also, A = 0 when a = b, since it then has two columns the
same. Hence, by the Remainder Theorem applied to a poly-
nomial in @, A has a factor a—b. '

Similarly, b—¢ and ¢—c are factors of A, and

A = K{a—b){n—e}b—c), )
where K denotes the other factors of A, if any. Moreover, bqth
A and the product (a—b){a—c)(b—¢) are of degree 3 in'the
variables @, b, ¢. Hence K must be independent of a, b, ¢ and
so is & numerical constant {(Theorem 6, Corollary~8). The
coefficient of a2b in the expansion of A is 1 and g,gnéfore KE=1
(Theorem 6, Corollary 2). ¥

A
ExAMPLE 2. Prove that A

a b ¢ ' NS
A=lc a b|= {a—!-b—f-c)(gﬂ—‘bd)—i—cwﬂ)(a-i—bwz—k cw),
b ¢ @ N

where w is @ complex cube x00b of unity.

SoruTioN (i). ¢\

QM-{:G b e

A =Aatbte a b (e} = ¢yFeates)s
I:~\ atbtec ¢ @
and tl{i{éf‘m*e A hag a factor a-+b+-c.
4 2 . peod-tawtba? (¥ =1)

Again, et-awtbw? = 1@

o N ) = w(a+bw-i—cw2),
\ }]rnd ' b+cw+aw.2 — bw3+ccu*+aw2

= wz(a—l-bw-l—cm?},

50 that

a+tbwteo® b ©
w(@+-bwtfcw®) @ b
wia+bofew?) ¢ @

and therefore A has a factor a-++ba-+ew.
4868 o

A= (e} = ertetate’ts),
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Similarly, A has a factor a4-bw?cw and so
A = K{g+b+e)la+bw+co){a-t+bw?+ cw).

In this identity A and the product of the three linear factors
are both of degree 3 in @, b, ¢. Hence K must be independent
of @, b, ¢ and s0 i8 & numerical constant, Since the coefficient
of ¢® in the expansion of A is 1, K must be 1,

. N\
SoroTioN (ii). Consider the product by rows of ghe'two

determinants R\
a b ¢ 11 1] O
c a b 1w w?[ Y
b ¢ a 1 o ol

It is, on making use of equations like '
\
¢+ wt-bw? = Gw3+aw—i~bw2’~— wia+bwtew?),
Jatbte a+ bw-tew? 'a,—i—bwzﬂ—-c:w
atb+e w(a+bw+m2),’wﬂta+bw2+cm)
a+bh+e 2(a—|—bw+cw2). w4 bw?4-cow)

1 1 1
(a+b+a{[a+bw+cw2}(a+bw2+cw) 1 w w?f,
\s,. 1 & o

and the result, follows, since the determinant last written is -
equal to 3(&‘-’*’ w) == 0. (This proof would, of course, be worth-
less if the fast determinant were equal to zero.)

\ ¢

Qﬁ&AMP_LE 3. Find the factors of the determinant
o) 1 1 1
' ' A=la? b2 2|
B IPI CR:

SoLuTioN. By the Remainder Theorem, b—e¢, c—a, a—b are
factors. The determinant is of degree 5 in a, b, ¢ and so the
remaining fuctor is of degree 2 in a, b, ¢. We shall give two
methods of finding this factor, the first method being one of
wide application, the second more particular in scope.
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Method 1. [Make the known factors appear explicitly.]
10 0 |

a? bta eta
L a bed-abtad ¢dcatal |

A= (b—a)e—a),

[Take ¢ == ¢,-¢, and take out the factor b—a«; y == Cz—¢y and
take out the factor c—a.]

[ b+a cta |

b tabta? Heatat

1 ' c+a

bteta e24-catal

<

A = (b—a)e—a)

= (b—a){c—a)(b—¢)

le; == ¢,—c¢; and take out the factor b--¢]

I ct+a

a7
b+ a? = ra—omy)

’\ W
= (b—c)fo—a)(a—b)(bo-+cat8b).

= (—a)(c—a)(b—o)

M étkqd 2. By the Remaind.e};‘i'l‘heorem and the degree in
@, b,’c, A = Qb0 o—a)a—0),

where @ is a quadra,ticiiig\a, b, c.

Now when b and‘c\)}e interchanged, both A and the product
(b—¢)(c—a)(a—b),are multiplied by —1, and so @ is unaltered.
Hence @ is sym‘{ﬁétrica,l in b and ¢. Similarly, it is symmetrical
~ in the three('ﬁﬁables a, b, c. The only symmetrical quadratic
functior‘&m“ti, b, cis

SN R b6 TRt cart-ab),
\#];’ere %, & are numerical constants.
But A contains no term in a%; hence & = 0, and 80

111
ja? B P :k(bc+ca—i—-ab)(b—c)(c—-a)(a—b).

ad B

We see that k= 1, EITHER by considering the coefficient of
"% OB by giving @, b, ¢ pa_,rticular values.
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9. Differentiation

9.1. TarorEM 28. If the elemenis of the determinant

a b e
Azzlay, by 0
ty by 4
are functions of w, ~
dA ‘dalfd:c b, (:12F ¢, dbyfdx ¢ ta; by dgydrx
|da fde by, ¢+ ay dbjde e, || a, 52:,.@32“ x
| dagfde by cal uy dbyfde ey ay by Megfdx
N
Proor. In the notation of §1, "‘\\
A=3 :I:{abc}lm\ \J
and so d Z :j: 7 {afbc J.
But -—-(abc) == ~b +a —]— b

so that, when we puf\in the suffixes and collect together all
terms in which an(g'is differentiated, we get a determinant
da, daz dag
da’ dx
and third/ éolumn €y, Cgy Cs) and so for terms in which a b or
ac 15\ d,lff\rentlated

\‘;GOROLLARY. There is a corresponding form for dAjds in which

whose first column is , second column &, &,, by,

Nate differentiate the rows of A instead of the columns.

9.2. Examples of differentiation.
ExampLe 1. Differentiate

1 1 1
1 22 3x2
vx a? P

A=

with respect to x.
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uriox. We shall differentiate ‘by rows’.

ga 1000 011 1 1
dr 1 22 39:3-}-_[0 2 6x|+|1 2= 3|
: x a2 2P| fz 2 2 1 2 322
rst and last of these determinants are equal to zero and
l 1.1 1 1 1 1
— ﬂ?! 0 2 6x|=2=a ] 2 [ (?’:; = .ra,,_.rl)
|1z 2 0 2—1 x2—1 r"\t\’
— ey} ¥ | = 2ep—11—20). O
1 a+17} ‘,‘,;‘
AMPLE 2. Differentiate R4
11 o e v
A=|1 2 a* AN
1 2 a A\
respect (0 X. P\%

uriox. We shall differentiate ‘by, gé’:lu?:nns’; there will
ly one non-zero determinant ag.only one column of A

\"

SN g

ins . X
T 1 a ' 1\ @
=1 2z a®| = — .gm/ 1 o
1 32 o PR 7
' L@t a— 1) 2va(e— 1) — 32%a(e—1)
s —gla—1)a—2x{e+1)+32%.
O
“{\ ExameLes X1V
Prqy{}.ﬂ‘qﬁ.’t’
et a—x a—¥ 1 _ i
V “ b_yl-— (a—-b)—).

a-xr a—Yy o
bz b—y b
c—x 6-—Y C—

— Q.

Tyt

Prove thal

By considering the product of the two determinants

at o 1 I —2x x*
B b 1), 1 —2y o
(€2 ¢ 1 1] —2z
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prove that

Az (b—x)t, (b—y)® (b—z)®
(c—2) (e—y) (c—2)?
= 2(b—c){e—a)a—b)ly—a)z—x)(x~1y).

(e—=)2 (a—gy) (a—Z)“‘

4. Obtain the result of Example 3 by. direct consideration of tI-
determinant A,
. N

6. Prove that ' A

| |@—2)* {a—yP (a—2)* (a—w)?

[ =) (b—yp (b—2)® (b—w)

le—a)® (=) (o2 (c—w) | T

[@—a) @—yp -z (@—wp O

Hiwr. Either multiply : \V
a? a 1 0 <
B b 10
2 e 1 04"
42 d ]f~:(§l'z

by an appropriate determinant in %Y, %, w, or use the ideas of § 2; writ-
down one of the 81 (= 39) detegn‘}’ihﬁnts indicated by Theorem 23 an
convince yourself that it ard alithe others must be zero.

NS
> 3

6.** By looking at Exé;mples 1 and -3 guess the value of the deter-
minant obtained hy welting (-, ete., instead of (@ -x), ete,, i
Example 5. e

Verify your giess,

. OV

Tok# Byolob'l\cﬁlg at Examples 2 and 5 write down a determinant o

order ﬁvg\"@hbse tfirst row is

AN (@aP @yl @—2p (@—u) (a—up
am,d:,%hose value is zero.
A \¥erify that the value is zero,

’"\ N/

4

8. Prove that

a—b

b0 ¢ a—b ag~¢
— (— b} .
| b—a 0 = (a8,

b—a O b—c ' = 0.

c—a e—bh 0
%, Prove that

P Oo y—x 0 i 0 JF g
1¢—y 0 g-—b|=0, —f 0 A|=0
0 b—a 0O ' —g —h 0
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10. Prove that

| 0 fr 4] T

—a 0 —z 0

6 = 0 a = {u?—a?)%
—g 0 —a @

Prove the resillts 11--14:

11. @ b ¢ |
a bt et | = (w-bte)b—elc—alu—b).
bte eta atbh .’\’:\‘
AN
12 11 1 RS
: « b = (b—c)c—a)u—b) '\":’«’
bo ca ab &V\ ’
13. -1 1 \\\:\z
b == (b—efo—uNa—bNa+ +q}
a:] 63 03 7 :\
..‘x\l
Mool AV
ad bt = {(b—e)le— a}(:&,’b)(bc+ca+ab]
a® b cB ‘:3"

X \ad

15. Prove the vesults of Exaxﬁpk; 13 and 14 by expressing
' {x1 01 11
NN e a2 B oo
. S\\ = ar gt b
’ \s A ad B B |
as the pr oduct»oi,ﬂa.etom and then considering

{i) the cﬂmetors of 22 and = in A,
(i1) t.l\ks\ee)efﬁments of x% and = in the product.

* J——

R ‘,
o\’»

"\) Ih. the following examples s, denotes a7 b+ ¢" and o, denotes a’-+ [

16. Prove that

8 5 % l ‘ I 1 1p
8, Sy S| | b
8, 83 S gt B c
17. Prove that
1 1 1 1 ¢ 1 g 81 Sz
a b elx|la b ¢ ‘: 8 83 8 }
@ b at b 55 9 O
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‘18.%* Find the factors of
8 8 8 8 & 8y
Sg 85 8 |, Sy 5y 8 |
Fy B 8 8y S5 Iy

Hinz. Study the suffixes and indices in Example 17,

19. Prove that

oy Gy O 1 1 0 1 1 1
o oy o =a b 0|lx|la b = O
1z g n o1 a® hE g A\ ¢
N\
== (o — B —a)w—b). o\
« \J/
20.%* Find the factors of ¢ Y
. (S0 81 g '5'::!' K7, ’
&/
‘51 Sz 83 &, . \:'\\
By & 8 & \4
1 2 3 %
| & 2 oz ’x:\\J
Hinr. Study Exempic 19, v
AN
In Examples 21-4 the symbo]:-y.:‘;},”_‘ll, ... have the meanings
assigned o thewu in § 4, a"
21. Prove that N\
o, 3\, b, ¢ |
Ay=| ga\"bytw o
‘}s’\&ﬂl_ b, ey &
S (@ by o)t (A, + By O+,

22, Provethat

e\ Adi+y B ¢
i"\/“ By = 4, B4y C;
X '\\“ Ay B, Cyty
N = 4§+ (Ar+ By Gy (g + by +¢5) Ay 4 A%,

<\ 23, Prove that, if A 5= 0 and Ty &g ¥y are the roots of the sguation
7A

1 = 0 (Example 21}, then the roats of the equation A, = ¢ {(Example

22) are Afuy, Afry, Afx,.

24. Prove that the vertices of the triangle furmed by the three lines

whose equations are

@&t yde =0, @ztbyyte, = 0, agtbyy-cy = 0,
(L0, BJGY), (A0, Byj), (4,00, By/Cy),
and show that the area of the triangle is A%/20, 04,

are
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25. When A = abet fgh-—af 2—-byt—ch? = 0,
A = be—f2,
¥ = gh—af, ete.,
prove that  A{4a*+2Hxy 4 By® - 2Gc+ 28y + C) = (da L Hy -G

) 26. Prove that, when u, », w are functions of z and dashes denote
differentiations with regard to «,

PR u v ow
d_x uf vi wl — u) v, w;
w v ow” Wttt W't ' X 4 ‘\
271 Prove that 4 N
P Zope A ; el I 2 A
oxdy oo 2 x oy dadyoz o fﬁ.iz"'
28.1 Prove that, when ’
1 1 1 A\
Awm 2 H 2 ,'\ ;.\
& gt 23N
oA | 8A oA N

o toy taAS
Hisr, In spite of appeara,nl;:e'aj:’ differentiate by rows and nob by
eolmns; and, if you can, thu{k(;f the eperaior 5‘1-{—%—!- a-a—z as & dif-
ferential operator whose gﬂ}ct on & determinant is given by a theorem
just lilke Theorera 28. \\"'

29. The elements E:gf a determinant are functions of 2 and three rows
become equal wheh/z = a. rove thab the differential eoefficient of the

determinant ayieh regard to = contains x—a as a factor.

30. Aj ’gt;'l‘ynomial of degree » in x which eontains s—o as & factor
may hs written in the form

AN Pl ~a)+Pr@—a) o EPpl )

"oy this fact to show that if F(z) is a polynomial, and if both F(z) and
\F’(x) contain z—a as a factor, then F{z) must contain {r—a)® as &

factor.

Tse the result of Example 29 o prove that, if three rows of & deter-

minant become eqnal when & == a, the determinant contains (z—a)® as
a faetor.

t Examples 27 and 28 should be omitted by readers who have not yet
learnt ‘ partial differentiation .,



ANSWERS

ExamprLeEs I &

1. Linear, rational, cubie, rational, rational,

Examrres I B

1 28—}, —35. 2 550,10, 96L 3. (i) 8. PN
Exameres (1 a KoY
L) fl—D) = 3,746 — —4; . O
(i} f(2) = 804565 = 141; N
(if) f(—8)= —2749—-311— —20, “<@"
iv) fl—2)= —84d42+1= -1, O
2 {i)a=—2; (iija = 8. 7 \J
3Jua~—36_4(ma_7b¢f&‘
7. a=36b=2 j::‘
8. {i) a+1,2—2, 2u—1; (ii) 342;31 41, 253,
9. (i) #—1, £—2, «—3; (11}.15-—1 »—2, x+3; (it} w—1, x+1, 22,

x+3.
10. (1) x—a, 2— 2, x——‘&x (it} z—y, 2— 2y, z-+ 39.
11, (i} &+, a— 23\2& b; {ii) b—2e, 3b+-¢, 25+ 3c.

N
> ’../

N\ \) Exawprrs IT 8
1, (1)(&\’—‘@’(3::-—4 e=d; (i} a=1, b= —3, =83, d = —1;
\{\u}aa—Bb—ll ¢=14,d = 5
&@a—lb*l(Mahlb—ICrhGMauLb=&ﬁ=&
p \,“ g =2
\\’ ) . ,
V4 5.(1)a=1,b=—6,c——_0,d=—2; (11}&:1,6:“2,(7:_1’
(iJe=hLb=—1,6=-3d= —]1.

Exampres If ¢
L b= —~3a,¢6=3zd= —q, 3. B, —15/4.
da=0Lb=2¢=4,

5. &ty +e)2a—By+42), (Jot-yt2)(de— 3y +42).
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Examreies [T 4

5, — 25, 50. 2, 13, 799.

3. a'—B0r427 = 0; ®— 11y 27 = 0; JP—5y+1 = 0;
o ' y*—385y4+ 303 = 0.

) e tbata = 0; (i) e+ y(b—2a)Fa—bfe = 0,

{iii) ay®+ 26y +4e = 0; {iv) atx?—(b2—2ac)e+c? = 0,

{(v) o224 b{b% —Juc)e+e® = 0; (vi) a®et 4 abex Le? = 0.
1. —9, —5, 5/3, 19.

o

12. (i) Tat44a?— 2+ 1= 0; {ii) y*—byP+1ly = 0; O\

L ¥
oS
N

(iii) 5°— 42 +8y—15 = 0; (iv) PP+ 492 +44y—49 = 0.

4
<

Exameres 1 B N
5. {1y HTE~3T) (i1} ${TLiv8); (iii) 64 V17); {iv) %{5}1;«13)
6 (1) 2 —dx+1 = 0; {ii) a*—dr+13 = 0; (ii1) a®< 6:0—[—4 =
(iv) 22— 6w+ 14 = 0; (v) 422 —dz—1 = 0,,(\5‘)~xf—x+1 = 0,
ExamprEs V A ’\ '
1. Turning-peints are {—§, —4}; (w§9§~1; (1, —5); all minima.
. Turning.points are {— 1, 3%4}); (7:1:;5}; (4, 61); all maxima,
. (i) (—1,14) max., (2, —13) adith (i) (—1, —14) min., (2, 13) max.
{iii) (—2, —9) min., (2, 23" mwax. (iv) (—2,9) max., (2, — 23} min.
A — 0, —-1; the gra.pb‘ X max. at {1,0) and min. at ( - 1)
. Inflexion at (&, «--"-\}hngent parailel to O,
. Inflexion at (2 ~-J‘], tangent parallel to ().

:h b

I

. Inflexion a¥ (0, 9), slope of tangent 12.
{1) Mz;r\at {1,0); max. af (2,1); min. at (3,0).
(ii) %, at {—1,11); min. at {1,3).
{m) Inﬁexlon at {1, 20); tangent parallel to- Ox;
AR
\"\ :}i”f = 15(z— 1)%(a2—2r-+ 8.

8. Max.at ¢ —2;min.abx=x§,

ki
8

ExamprEs Va2
1. () 1-8; (i) 1-8; {ifi) 2.
2, (i) 0-4; (ii) O4; (iii) O-5.
3. —1.1, 0-8, 15,
4. 09 (0-857), —2'6.

N\
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Exameres V19 a
5. (i) 120; (i) 720. = 6. 2%.3.7.13.17.19 == 705,432.
7. (i) 6x 90 = 54; (ii) 15X 84 = 1,260.
8. (i) 120; (ii) 15; (iii) 56, {iv} B6.
9. 71 = 5040, 4! = 24, §! = 120,
10, 10.9.8.7.6.5.4 — 604,800 11. 604,800,

12. 120. 13. 60, 2520, 10, 21. I\
16. (i) 3535 = 70; (i) 20416 = 35; (iii) 284 112470 — 2103«
O
ExampLES VI B A

1. 204425, 04 6.20. 281 4.2.20 Fut = 16+ 320+ 2448} 823+ 2,
kW,
351 5.3%(2x) + 10. 33(2)2 4 10, 3202 1 5. 3( 2p)A b (20)°
= 2434 810z 4 1080223 7203 4 2402 + 3225,
I+ 6+ 1522+ 200+ 15+ 6P 28, o
14 5(2z) -+ 10{2x)% - 10{2x)% 4 5( 22} {21
== 1 100 4022 -+ 80x5 + 80x* 1 3225,
2. (i) a7 TaS-- 2la®-+ 35wt 1 3608 21 T £ 1,
(i) 254 5. 204+ 10. 282 4 100852 -5, 2+ 25
9= @54 1024 4 4023 + 8022 4 80x 4 32,
(iii) (22)3+3(22)". 343(22). 82+ 5 = 8294 36a%+ 5dw {27,
{iv) :z:3+8x7-[—28;;":1}%6:5“—]—701:4—1—56503-1,—28:.\:2 1-8x | 1.
3. 16, 3072, 36, "%, 45, 84, 80,
.3+ 17x+%}§xﬂ~} BExS £ 4524 + 93051 Taf-a7,
\ ’ ©4-522-1- 1027 £ 102t |58 |25
6. —5ed400 7. 1-149, 2-558.
8. M0161, 1:1566. 9. 0-9039, 0-9378. _
30,7 a8 4 2125+ 85w +352 4 20551 T~ a7y~ 14, 0,
\”\ M1 2+ a2+ 64 da? o, 94 Tt 11924 264 1902 | Ta—t 425,
12, 84120 —302% —352° | 452t 4 2725 — 2725; - 1620 217;. -~ 37 {expand
in descending powers of x).

[

13. a, = 81, @y = 108, a, — 378, a, — 336, ¢, — 595. - 14. 29,
15. 1—100+2527, 14 2dz 24042, 274272 — 182,

16. 6(a—b), 3(Bat—12ab+-56%. 17, 4.

19. G, 4778, (— 1Y 40, 55727, ,C, 2'an=Thr.

20. 0, 271 3rgin—sr (], Qn-r3ran—tr,
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ExaMpPLES VI ©
1. 70, 252, B. 945/64. 6, r=11.

Bl = b 300t 3 Grat i
wptle = Wb 400 18,0 b 4.0 51 s
12, Coeff. of 2 in {1-Fayt(l —r)Pt = coefl. of &7 in {1 —x}1—2¥)™
13, Coéff. of x5+ in (14x)*% = coeff. of 17 in (14)".a™(1 424" ~
14, Coeff. of g™ in {1 +a)#+™ = coeff. of 2™ in (1 T x)Ramre{] —{—x_‘}”‘&“%‘
15. Coeff. of a® in (142" = coeff. of a® in (1+z)* a1 +ai‘1)\"\
o W/

16, LH.G, == (1-Fx)* - the S{@) of Problem 3, § 7.5 N

17. Lol L.H.S. == f(), and F(z) = [ f{x) dw; then x’}lq.ot)... the Six)
of Prahlem 3, § 7.5, \J

19, Lot f) — 1.24-2.3 012+ Jot [ f(2) d2 -2 ), | F(@) da = 6(w);
then f{z) is the second differential coeffi@'ent of G{z), and

Fx) = 9:3{1-5-.5“-:3‘?.,5

20, Second part. On integrating g{'{ﬁz}; {(l+x)* twice [F'(0) =0,

F(O) = 0]’ .“~ -
SR i\ A
PO = e D At DY
i'“\

\ *O Exameres VII

1. (i} Homog, of“éieéree 3, (ii) and (iii) not homogeneous, {iv} homog.
of degg{e’ Q ¥(v) homog. of degree 3, {vi) not homogeneous.

3. (i}, iv'}}:ﬁmd (v) are symmetrical;
{ii.}'\ts unaltered if we interchange z and ¥, when it becomes
~.":‘.'cz+zy+ 2y, which is the same as yz-am-+ 2xy; bub when we
,”\: . interchange x and z we get yx+oz- 22y, which is not the same
\/ as yz+z+2y; '
(iii} is altered if we interchange = and 2.
8. (i) ba(b—¢) +cajc—a) +abla—b); (ii) a¥{b—c)+b¥c—a)+cMa—b);
{iii} ¥ f-cP—a®+a?—b%; (iv) bc(b3+c“]+ca(c’—]—a’)+ab{a'-i—b5};
(v) athbd-bletcta; {vi) a(b—c}—l—b(s—-a)—{-c{a—--b).
B (1) adyt ety (i) eyt et et
{iii) yz(y—-:)—[-:x[z—»x}-{—xy(x—y); (iv) of abt ettty
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ExamprEs VIIT &
l. (JA=3B=—16,C=23% (ii)d=—1,B=30=85
(i) d =1, B = —g-,C:%,D:-}

o1, 2 1 ] 2 1
20t mer Wit Tl
1 1 2 1 .
““)x+1_x+2+x+3 () 23774 z—5 N\
L)\
. 1 5 25 AN
D e T T T e+ O
N 9 21 17 « G
W e T HGry TRy (O
XN\
5 7 26 \V
W) — 373 ~ 9679 T 8@a—5) D
vy 5 3L % \\
2—2 x—3 z—4’ AN
W 2 2x+l : . x41
R T (‘Dm PP Nl
1 72w ;lj" -“ 5 3 z+1
W — e ta— Ty

i) — syt S(43¥R5)’
KN

5. {I}A.-—I,H\'%w—l O=1
(111)A—~—1 M=—1,C=—~1,D=1;

(1V}A-—3,\B—1 C=—3,D=2

Gijyd=1B=—1,0=2;

“}“ 1 1 11 2
& ”\“'x 3 m—op N e T P T
i\{m _—Ttx—z)*"(x—mﬁ.%:“:é'
\\9' 3 2
(w)—-——-—i—{x 0t z—2 " w_gF
.2 3 4 . 2 3 1
Sty W pTitame
2 3 | 2 T
(m)—’c it {x— 1)“+'e:+1’ 5 }2mw-l a1’
1 255 .1 2 1 2
AR ey Sl rems Y oy sk oy

&) §5=3) ~ dizer iy
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8. {i) Is obtained from the given result by replacing x by « 41,

(11) L1 ” I e T by x—1.

T | 1 1
Q. o] ——— —_—

) 2(:r—1 T+ 1) (11) 1T arn

2 3
ey - M R ¥
Exampres VIII B ~

1. Use (N, L D)/(N,~D,). 2. Use (N,+83D)}(2N,— D,). R
3,2 22/7. 4 2:3:4. 5. 1:2:3 N,

8. 1:3:2. 7.2 =36ty = —4t, z =10 %
8. 2=2,y=3,2=4 "
9,x=—1y_lz-—-3 x_1y=—1z——3“\

Exampres IX a0
1. Asymptotes {{) ¥y = 1; (i) y = —1: gsnéml shape § 1.4,

2, Asymptotes (i) ¥y = 0; (i} y = 0 gﬁnera.l shape § 2.2.

3. (i} Asymptote y = 0; has magc a,t (1,1}, min, at {—1, —1).
(ii} Asymptote y = 1; has max. at {1, %), min. at {—1,}).
4. Asymptotes {i} ¥ = 2, 0= 1 (it} « = &, ¥ = 1: generel shape § 2.3.

5. Asymptotes (1) x = l\x =3y=0;jzr=lLe=—-lLy==0no
max., no mi \*v’

6. (D) Asymptot-és:c =1, 2 = 2, y = 0; turning-points & = 3142,

(i1} Asymp@otes 2 == 1, x = 2, y = 0; turning-points z = ++2.

7. {i) Asymptote 3 = 1; general shape § 2.2 inverted.
(i stmptote 4 == }: general shape § 3.2, with max. at x = ~0-37
L and min. at 2 = 1-37.

T, !
S

o) _ ExampiEs X
L (i) 1~i—3a:+ﬁa:”+10:z:3—i-...—l—§{r+l)(r+2)m’+
2 3
TP PCTTER L
5 @) 111, _7.98.11; i 2(%:-1) Cp<o<h
1.4, k—2
(i), 43, 208 (~p AT By cacy

3. () rs (i) 1.
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4 (1) 14+ 20422024 1 200 ...
(i) 2z 5x3-f 0%+, (e 3t L.

1 — 1) ’ . ﬂ(n—l} (nwr—l 1)
(Mot ), (i 8

n{n—1).(n—r4- 1}
I

&

an- r3r

{iii) (—1y——
Valid (i) —2 < z « 2, {{) —2 < = « £, (1ii) —& <2 <3,

i
8. (i) i—toigat-.. w‘,:; B —2 <@ <2 |

3?1 !‘2?’

245 FTe J "2“\*'42

\l

(i) g+ L+, —|—§{r+1)(r+2)3f+3 N ;wﬁ <z < 3
T () 14-3u+ a4 1 (21t -1 <~;c~< %

(ii) 1——3x+7x2——...+(—1)"(2"“—1)::"—{— i3 <w < b
8. (1) 24 30+ B (2+ 1)t L s Xz <.

() 24-3e 4 422 4o+ (r - 207 4. @1 <z <l
% () 14324 T4 L (o IR 1 e 2 < 1.

() 274 dadf 1120y, (2 T)Tﬂ i =} e L
10. (i) 0-914(3); by tables, 0-919

(ii) 0-929; by tables, 0‘929
1. (i) 1-006 x 10-5; sgne hy tables.

(i) 999-9; by t@ms 1000,
12, (i) 1+4x+&~z}=+3ﬁm3 () 142042 — des,
18, () 1— 5234410:1,2 1029, {it} 1-—-322+ 107,

N/
¥ 2 s
14, (;),xez -2l - 1262%-- 56729), (2L} l( ~--—~-{ 153' ?;“?8)
16,\(~-£—2 b=4 1l a=18b= _99 44
1‘8\ First prove that ¢ — Lb=—2,¢=—1.
»\
PN\ Exsamrres XT 4

L 32t jet et ot 1< g,
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6. (i) Coeff. of x™ = 0, {ii} coeff, of x* = 2(n- 1}mn!,

.. 5 35 Rzt 8 8
q, —_——— e —pr T v e
(i} ~g&—m52 = o T TEE < g
(i) (2243 Mn; —2 <z < 2

l)!‘l 1

10. log2+§x+§x”+...—f—£[l+ Jx”+ wi —lg <l

11, 4x— 3024 §u%; Sr— 23 280,

12. 24 38— 32+ et O\
Examreres XI R O\
lL.a= %, b= é- ¢ \\\
1+2’.‘ l+$ ', N/
3'21g1—m lgl O3
N i'“
_ Examrres XIII 4 AS

1. 11, 66, —2, 43. :

2. ayle—y), br—ay, (v~y)]~z--y—ay). \

3. 50, 51, 52, 53. ANV

4, 1I, TI1. 5. IV, Corollary, TT. .\ 8V, V.

7. VL #f = ry—bry; VI, 7 — 7, %by.

€ _y_ oz N\ z _y 2
& == Q % 1373 53
N\
@ ¥y _ 2 O x Y z
10'1_5:-3:5 \\ 11. -_—,5I=E='1_3'
. x ¥y = ,,,‘ _.':c__..g=i
12.3=5=pC 13 L=
e .\l i
g 13 34
14 "’:&b —2 15 ®= =y = g
N 4 17 g 5L _22
..iﬁ\“:ﬁ-ﬁ,ys_ﬁ. L= 1_3,?)‘—13-
N8 =1,y =2 19, 2= —Ly=2
Examrres XIIT B
1. —9, —2,43.
2. —(y—aMz—aNm—y) or Yl+riu-Faty—yet—2zt 2y
xa_]_ys+zs_

3. az(y’—z’)+by(z*—~x’)+cz{:r5 ~4%). The second determinant has the
same valie as the first.
4868 P



210 _ ANSWERS

Exawrres XIIf ¢

L x(-m-—nb]—y(&c—-m)—{—z(lb—ma},. The order mc or cm does not
x(bn—om) —ylan—cl) +2(am—bl), ; matter, but keep same pattern
alyn—zm)—blen—zl) +e{om—yl), throughout.

oy —z)— Yz —2) +2Ha—y),

w2y —z) —a(y? — )+ yely —2),

xB(bn—cm) —aly®h—zm) + ly*c —2%h). Wa¥

2. a(me—nb)—Ilye—zb)4-alyn—zm), O\
o{bn—cm)—alyn—zm)+Hye—zb), £ ;
ajyn—zm)—x(bn—cm)+i(bz—ecy), N
ety —z)—al{y*—2%)+yAy—=2), 4
2y —2) —y*z -z} + 2Nz —y), \%
zibn—em)— yHan —cl) +2%am —bl). ,\\;

$
4

P 4
\V
3
/

v

3. (i} each = 3 ayz{b—c),
(ii) ench = ¥ wa(b®—ct), | ™
(iii) each = ¥ zbe(c—b). LV

N
O
ad
N
¢
<

X
»
/

L NExamprLes XIII p
—436, —1, 0\\"2 0, —261, 984.

ot
-

::\i:.:\) Examrrrs XIIT &
| \(E]\,X = vn—wm, ¥ = wl—wun, Z = um—vl,
;.Qii} X =eq—br,Y = ar—cp, Z = bp—aq.
\ (i) X =1, ¥ = —2, Z = 1.

o

\.' fL,x=Ly=1,z= —1 hhxa=4y=Lz=0

N,

f.x=1y=2,2= 3. Te=2,y=1z=2.
8. ¢ = (b—d){c—d}/(b—a)(c—a}, ete.

13, z = 1110}, y = ~243A, # = A; where A is arbitrary.
14, # = 4444, ¥ = 14134, z = 3A; where A is arbitrary,

15, & = H{B—A), y = }(T—A), 2 = X; where A is arbitrary.
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ExawmrprLes XIV
6. %a—bd){z—e)la—d)(b—e)b—d}e—dXzx —y)(z—2) ete.

7. The first column is (z—=2zp, (b—a), (e—2), (d—2)3, (e—ax)®. The
proof consists of multiplying a determinant whose first row is

. «® a* a 1 0
by one whose first row is N
1 —3x 3 2 Q; '\
another proof by Theorem 24, when every possible dcterlru&t
is zero. :"\t\
W W
18 (i) (Pt —at){a—b2)(b —ele—ala—b); N
(i) {(B*—c*)er—a?)a?—b3)2, O
20, { 1 0 rr 11 \\\\>
! b ¢ 0 ‘ca b ¢ xJ \\,
t X 1 2 95
bt et 0 iaz 5 = ¢*{
]0 0 0 1| |a® b o x“L':}\
= {{t—c)e—a)dg—bNz—a)x—b)(z—e).
‘:\:;‘
RS
Q‘\‘\Q
\’g’
N\
~
¢ & "
N
‘\s./‘
{}V
"2,\”)
O
N
o



NOTATIONS

fir) a function of x
= equalx, i8 equal to
-z s identically equal to
2 15 not equal to
<= is approximately equal to
i =1
w cos(2m/3)-+isin{2n/3), w* =1
n! w{n—Dn—2)..1 “”:7\
SR mlf(n ! (.é }
ﬂ(}l‘ ﬂl/‘.-‘" - T}' \<;§</
> is greater than \\\
< i less than Q}
> denotes sum ’éb
A denotes a dege‘rmmant
&
N
N



Algehraic function 3,
Alternating function
Analytical geometry:
general conie 173,
coneurrent linos
Approximation:
to roots of equation
numerical 73, 134,
to term in «¥, ete.
Asymptote 114,

Binomial coefficients
Rinomial theorem:

INDEX
Numbers refer lo pages,

87.

L78.

29.
75, 134,

71, 78-805.

for positive integer index 7M.

for any index 129.

{1231, {I—x)3 ete.

_proof by indurtion
Biquadratic 2.

Coefficients:
defined 2.
eguating 19, 23,
real only 42

Cofactors 169, 186.

Combinations 08.

Complex numbers:
introduction 35,
conjugate 37.

~ Consistent equations

Constant .

Convergent series

Cubie function 2.

Cyelic expressions 88

Determinents:

A/
cofactors as elenienis 186,
sofactors of/zerd deb.

composité 183
diﬁerens%istion 194
exXpanBie

182, -
factors 192.

fiimors and cofactors

M'?f order two 155,
three 159,

Y four 190
product 184, 190,

135,
15l

178, L0

126 et 3&&1.:\

\\

188.

169-92.

Element {of determinant} 158,

Equal ratios 104-11.
Hquating:

coefficients 1%

real and imaginary parts 37,
Fqnations:

defined  26.

guadratic 27, H.

Equations (cent.):
cubic 28,
simultanects {t.v.)

Exponentidl function, «*

BN
138,

Pactors:
by Remainder Theorens 12, 8%,
by induction  148.
of determinantx 92,

Fractions, partial D4-102, N
Funetion: (\)
defined 1. NS

of two variahles B, g ™

N
General 1erm: A
of binomial expansignt” 71, L3k
of logavithmic ekpansion 142
Giraphs: ’ )
polynomialuy ntluding
and cuhbich, 49-62.
mtional‘{kmctions 112-24,
X 3

cruadratic

Homadgensous:
polyromials 86.
linear equations 153, 173 (II}.

»

\° Inconsistent equations 178,

Identities:

basgic theorem 18,

binomial coefficients 80-4.
examples on 10
involving factora 89,

proved subject to a polynomial in-
equality 23
Imaginary numbers 36,

Induction 147-52.
Infinite series:
for {1 +xy* 129.
, rational functions 132,
. 138
. log{l+z) 141
Inflexion 5§46
Linear function 2.
equations 153 et seq.

Logarithmic function 140

Maxima and minims 49, 50.
Modulus {of coroplex number) 37

Necessary and sufficient 43, 46.
Newton's method of approximating
to roots of eyuations 60,

Partinl fractions H4-102,

Q



21¢

Permutations 64,
Folynomial:
defined 2.
two, three variables 22, 86-93.
Positive-definite form 44,
Product:
of linear factors B3.
of two polynomials
of two determirants

13
184,

Quadratic:
defined 2.
form 44.
equations 27, 34.
theory applied 121-3.
Quartic 2.
Cuintic 2.

Rational function 3, 94-124,
Real number 35,
Remainder theorem
Roots:
double, simple
of quadratic

il.

28.
34, 36,

INDEX

Roots {coni.):
relations involving coefficients 27
34

Sextie 2,
Sign of & product  43.
Sirnultaneous equations:
two equations  153-5.
three homogeneous 173 {II}.
three non-homoegeneous
when A = 0 173 (I).

when A = 0 175, 176, I\
Sum of cubes 149,
squares  §50. A\
Symmetrical functions 87:\\..\
P\
Term: '

general, of series '?};\130 142,

of polynomial ‘*:\

Vandcrmondg‘,’é;\héorem 80-2.
Variable: o

deﬁned

depe,nd‘enf and independent 4.

Ze'(éa'¥ a polynomial  26.

\
N

:o
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